Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36012192

ABSTRACT

Adipose-derived mesenchymal stromal cells (ADSC) are a promising source for cellular therapy of chronic wounds. However, the limited life span during in vitro expansion impedes their extensive use in clinical applications and basic research. We hypothesize that by introduction of an ectopic expression of telomerase into ADSC, the cells' lifespans could be significantly extended. To test this hypothesis, we aimed at engineering an immortalized human ADSC line using a lentiviral transduction with human telomerase (hTERT). ADSC were transduced with a third-generation lentiviral system and a hTERT codifying plasmid (pLV-hTERT-IRES-hygro). A population characterized by increased hTERT expression, extensive proliferative potential and remarkable (potent) multilineage differentiation capacity was selected. The properties for wound healing of this immortalized ADSC line were assessed after 17 passages. Their secretome induced the proliferation and migration of keratinocytes, dermal fibroblasts, and endothelial cells similarly to untransduced ADSC. Moreover, they sustained the complete re-epithelialization of a full thickness wound performed on a skin organotypic model. In summary, the engineered immortalized ADSC maintain the beneficial properties of parent cells and could represent a valuable and suitable tool for wound healing in particular, and for skin regenerative therapy in general.


Subject(s)
Mesenchymal Stem Cells , Telomerase , Cell Proliferation , Endothelial Cells/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Telomerase/genetics , Telomerase/metabolism , Wound Healing/physiology
2.
Int J Mol Sci ; 22(12)2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34207905

ABSTRACT

Bone marrow-derived mesenchymal stromal cells (MSCs) are major players in regenerative therapies for wound healing via their paracrine activity, mediated partially by exosomes. Our purpose was to test if MSC-derived exosomes could accelerate wound healing by enhancing the biological properties of the main cell types involved in the key phases of this process. Thus, the effects of exosomes on (i) macrophage activation, (ii) angiogenesis, (iii) keratinocytes and dermal fibroblasts proliferation and migration, and (iv) the capacity of myofibroblasts to regulate the turnover of the extracellular matrix were evaluated. The results showed that, although exosomes did not exhibit anti-inflammatory properties, they stimulated angiogenesis. Exposure of keratinocytes and dermal (myo)fibroblasts to exosomes enhanced their proliferation and migratory capacity. Additionally, exosomes prevented the upregulation of gene expression for type I and III collagen, α-smooth muscle actin, and MMP2 and 14, and they increased MMP13 expression during the fibroblast-myofibroblast transition. The regenerative properties of exosomes were validated using a wound healing skin organotypic model, which exhibited full re-epithelialization upon exosomes exposure. In summary, these data indicate that exosomes enhance the biological properties of keratinocytes, fibroblasts, and endothelial cells, thus providing a reliable therapeutic tool for skin regeneration.


Subject(s)
Exosomes/metabolism , Fibroblasts/metabolism , Keratinocytes/metabolism , Mesenchymal Stem Cells/metabolism , Neovascularization, Physiologic , Skin/metabolism , Wound Healing , Humans , Skin/injuries
3.
Rom J Morphol Embryol ; 60(3): 793-802, 2019.
Article in English | MEDLINE | ID: mdl-31912089

ABSTRACT

Pathological wound healing states, such as hypertrophic scarring and keloids, represent a huge clinical and financial burden on healthcare system. The complex biological mechanisms occurring in hypertrophic scarring are still barely understood. To date, there is no satisfactory description of hypertrophic fibroblasts. Therefore, in the present study we focused on the comparatively characterization of the fibroblasts residing in different regions of hypertrophic scars. To achieve this aim, fibroblasts were isolated from normal skin samples (n=4) and hypertrophic scars (n=4). These cell populations were further were used for the evaluation of proliferation and migration capacity, for the gene and protein expression of extracellular matrix protein type I collagen and fibronectin and for the presence of myofibroblasts. Our results demonstrated that perilesional and intralesional fibroblasts isolated from hypertrophic scars could be considered as distinct populations, having different properties. Thus, the intralesional fibroblasts had an increased proliferation capacity and increased gene and protein expression of collagen I and fibronectin. However, the perilesional fibroblasts had augmented mobility as revealed by in vitro scratch test and contained a higher percentage of myofibroblasts [alpha-smooth muscle actin (α-SMA)high cells], in comparison to the intralesional population. In conclusion, our data could provide an explanation regarding the inconsistent efficacy of topic therapies for hypertrophic scars.


Subject(s)
Fibroblasts/metabolism , Skin/physiopathology , Cicatrix, Hypertrophic/pathology , Humans , Immunohistochemistry , Keloid/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...