Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 5: 16753, 2015 Nov 23.
Article in English | MEDLINE | ID: mdl-26592198

ABSTRACT

The realization of an innovative hybrid light source operating at room temperature, obtained by embedding a carbon nanotube (CNT) dispersion inside a Si nanowire (NW) array is reported. The NW/CNT system exhibits a peculiar photoluminescence spectrum, consisting of a wide peak, mainly observed in the visible range, due to quantum confined Si NWs, and of several narrower IR peaks, due to the different CNT chiralities present in the dispersion. The detailed study of the optical properties of the hybrid system evidences that the ratio between the intensity of the visible and the IR emissions can be varied within a wide range by changing the excitation wavelength or the CNT concentration; the conditions leading to the prevalence of one signal with respect to the other are identified. The multiplicity of emission spectra obtainable from this composite material opens new perspectives for Si nanostructures as active medium in light sources for Si photonics applications.

2.
ACS Appl Mater Interfaces ; 7(33): 18201-5, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-26258654

ABSTRACT

A very bright room-temperature cathodoluminescence (CL) signal, tunable in the visible range by changing the Eu(2+) concentration, has been observed in Eu-doped SiOC films. Depth-resolved CL measurements demonstrate that a bilayer consisting of two SiOC films containing different Eu concentrations allows the continuous tuning of the Eu(2+) emission from blue to green by changing the energy of the exciting electrons. Furthermore, the proper control at the nanoscale of the electron penetration depth allows to obtain a high-quality white light emission. The compatibility of SiOC films with Si technology opens the way to promising applications of Eu-based materials in lighting and display technologies.

3.
Nanoscale Res Lett ; 9(1): 74, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24521284

ABSTRACT

Multi-quantum well Si/Ge nanowires (NWs) were realized by combining molecular beam epitaxy deposition and metal-assisted wet etching, which is a low-cost technique for the synthesis of extremely dense (about 1011 cm-2) arrays of NWs with a high and controllable aspect ratio. In particular, we prepared ultrathin Si/Ge NWs having a mean diameter of about 8 nm and lengths spanning from 1.0 to 2.7 µm. NW diameter is compatible with the occurrence of quantum confinement effects and, accordingly, we observed light emission assignable to the presence of Si and Ge nanostructures. We performed a detailed study of the photoluminescence properties of the NWs, with particular attention to the excitation and de-excitation properties as a function of the temperature and of the excitation photon flux, evaluating the excitation cross section and investigating the presence of non-radiative phenomena. PACS: 61.46.Km; 78.55.-m; 78.67.Lt.

4.
Opt Express ; 21(17): 20280-90, 2013 Aug 26.
Article in English | MEDLINE | ID: mdl-24105574

ABSTRACT

The intense luminescence of SiOC layers is studied and its dependence on the parameters of the thermal annealing process elucidated. Although the emission of SiOC is bright enough to be interesting for practical applications, this material is even more promising as a host matrix for optically active Eu ions. Indeed, when incorporated in a SiOC matrix, Eu(3+) ions are efficiently reduced to Eu(2+), producing a very strong visible luminescence peaked at 440 nm. Eu(2+) ions benefit also of the occurrence of an energy transfer mechanism involving the matrix, which increases the efficiency of photon absorption for exciting wavelengths shorter than 300 nm. We evaluate that Eu doping of SiOC produces an enhancement of the luminescence intensity at 440 nm accounting for about a factor of 15. These properties open the way to new promising perspectives for the application of Eu-doped materials in photonic and lighting technologies.

5.
Opt Express ; 20(5): 5501-7, 2012 Feb 27.
Article in English | MEDLINE | ID: mdl-22418355

ABSTRACT

A stable Eu3+ → Eu2+ reduction is accomplished by thermal annealing in N2 ambient of Eu2O3 films deposited by magnetron sputtering on Si substrates. Transmission electron microscopy and x-ray diffraction measurements demonstrate the occurrence of a complex reactivity at the Eu2O3/Si interface, leading to the formation of Eu2+ silicates, characterized by a very strong (the measured external quantum efficiency is about 10%) and broad room temperature photoluminescence (PL) peak centered at 590 nm. This signal is much more efficient than the Eu3+ emission, mainly consisting of a sharp PL peak at 622 nm, observed in O2-annealed films, where the presence of a SiO2 layer at the Eu2O3/Si interface prevents Eu2+ formation.


Subject(s)
Europium/chemistry , Membranes, Artificial , Silicon/chemistry , Adsorption , Light , Materials Testing , Oxides/chemistry , Refractometry , Scattering, Radiation
6.
Opt Express ; 20(2): 1483-90, 2012 Jan 16.
Article in English | MEDLINE | ID: mdl-22274492

ABSTRACT

In this paper we describe the luminescence properties of Si nanowires (NWs) prepared by a maskless synthesis technique, based on the Au-catalyzed wet etching of Si substrates by an aqueous solution of H(2)O(2) and HF. A strong room temperature photoluminescence (PL), centered at about 690 nm, is observed when Si NWs are optically excited. The detailed analysis of the steady-state and time-resolved PL properties of the system as a function of aging, temperature and pump power allows to demonstrate that the emission is due to the radiative recombination of quantum confined excitons. These results open the route towards novel applications of Si NWs in photonics as efficient light sources.


Subject(s)
Nanotechnology/methods , Nanowires , Optical Devices , Silicon/chemistry , Temperature , Equipment Failure Analysis , Models, Theoretical , Photons , Time Factors
7.
Nano Lett ; 11(11): 4879-84, 2011 Nov 09.
Article in English | MEDLINE | ID: mdl-21967286

ABSTRACT

We investigate size-scaling in optical trapping of ultrathin silicon nanowires showing how length regulates their Brownian dynamics, optical forces, and torques. Force and torque constants are measured on nanowires of different lengths through correlation function analysis of their tracking signals. Results are compared with a full electromagnetic theory of optical trapping developed in the transition matrix framework, finding good agreement.


Subject(s)
Models, Chemical , Models, Molecular , Nanostructures/chemistry , Nanostructures/ultrastructure , Optical Tweezers , Silicon/chemistry , Computer Simulation , Diffusion , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...