Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem Toxicol ; 106(Pt A): 155-164, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28552787

ABSTRACT

The aim of the present study was to investigate the in vitro antioxidant and antitumor effects of Salvia fruticosa Mill subsp. thomasii (Lacaita) Brullo, Guglielmo, Pavone & Terrasi (Lamiaceae). The aerial parts were extracted by maceration with methanol. This extract was partitioned with methanol and n-hexane. Luteolin, luteolin 7-O-glucoside, rutin and salvigenin were isolated from the methanol-soluble fraction. n-Hexane fraction showed viridiflorol, ß-pinene, 1,8-cineole, as main components. The methanol-soluble fraction exerted antitumor activity against human breast cancer (MCF-7 and MDA-MB-231) and human colorectal carcinoma (RKO and Caco-2) cells. TUNEL test revealed that S. fruticosa subsp. thomasii leads to cells death by apoptosis, with low cytotoxic effects on non-tumoral 3T3-L1 cells. Moreover, it exerted the highest protection of lipid peroxidation and reduced the oxidative stress induced by menadione treatment in 3T3-L1 murine fibroblasts. S. fruticosa subsp. thomasii bioactivity could promote its use not only as food but also in nutraceutical/pharmaceutical industries.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Plant Extracts/pharmacology , Salvia/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Apoptosis/drug effects , Cell Line, Tumor , Humans , Plant Components, Aerial/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification
2.
Mini Rev Med Chem ; 16(8): 619-29, 2016.
Article in English | MEDLINE | ID: mdl-26156545

ABSTRACT

Elevated serum cholesterol, triglycerides and LDL levels are often associated with an increased incidence of atherosclerosis and coronary artery disease. The most effective therapeutic strategy against these diseases is based on statins administration, nevertheless some patients, especially those with metabolic syndrome fail to achieve their recommended LDL targets with statin therapy, moreover, it may induce many serious side effects. Several scientific studies have highlighted a strong correlation between diets rich in flavonoids and cardiovascular risk reduction. In particular, Citrus bergamia Risso, also known as bergamot, has shown a significant degree of hypocholesterolemic and antioxidant/radical scavenging activities. In addition, this fruit has attracted considerable attention due to its peculiar flavonoid composition, since it contains some flavanones that can act as natural statins. Hence, the study of bergamot flavonoids as metabolic regulators offers a great opportunity for screening and discovery of new therapeutic agents. Cholesterol metabolism, flavonoid composition and potential therapeutic use of C. bergamia Risso will be discussed in the following review.


Subject(s)
Atherosclerosis/drug therapy , Citrus/chemistry , Flavonoids/therapeutic use , Hyperlipidemias/drug therapy , Animals , Flavonoids/chemistry , Flavonoids/isolation & purification , Humans , Molecular Structure
3.
Oncogene ; 29(16): 2404-14, 2010 Apr 22.
Article in English | MEDLINE | ID: mdl-20101208

ABSTRACT

We earlier identified a lysine to arginine transition at residue 303 (K303R) in estrogen receptor alpha (ERalpha) in invasive breast cancers, which confers resistance to the aromatase inhibitor (AI) anastrozole (Ana) when expressed in MCF-7 breast cancer cells. Here, we show that AI resistance arises through an enhanced cross talk of the insulin-like growth factor receptor-1 (IGF-1R)/insulin receptor substrate (IRS)-1/Akt pathway with ERalpha, and the serine (S) residue 305 adjacent to the K303R mutation has a key function in mediating this cross talk. The ERalpha S305 residue is an important site that modifies response to tamoxifen; thus, we questioned whether this site could also influence AI response. We generated stable transfectants-expressing wild-type, K303R ERalpha or a double K303R/S305A mutant receptor, and found that the AI-resistant phenotype associated with expression of the K303R mutation was dependent on activation of S305 within the receptor. Ana significantly reduced growth in K303R/S305A-expressing cells. Preventing S305 phosphorylation with a blocking peptide inhibited IGF-1R/IRS-1/Akt activation and also restored AI sensitivity. Our data suggest that the K303R mutation and the S305 ERalpha residue may be a novel determinant of AI response in breast cancer, and blockade of S305 phosphorylation represents a new therapeutic strategy for treating tumors resistant to hormone therapy.


Subject(s)
Aromatase Inhibitors/therapeutic use , Breast Neoplasms/drug therapy , Estrogen Receptor alpha/chemistry , Cell Line, Tumor , Drug Resistance, Neoplasm , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/physiology , Female , Humans , Insulin Receptor Substrate Proteins/metabolism , Mutation , Phosphorylation , Proto-Oncogene Proteins c-akt/physiology , Receptor Cross-Talk/physiology , Receptor, IGF Type 1/metabolism , Serine
SELECTION OF CITATIONS
SEARCH DETAIL
...