Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 298(7): 102058, 2022 07.
Article in English | MEDLINE | ID: mdl-35605664

ABSTRACT

There is substantial evidence for extensive nonvesicular sterol transport in cells. For example, lipid transfer by the steroidogenic acute regulator-related proteins (StarD) containing a StarT domain has been shown to involve several pathways of nonvesicular trafficking. Among the soluble StarT domain-containing proteins, StarD4 is expressed in most tissues and has been shown to be an effective sterol transfer protein. However, it was unclear whether the lipid composition of donor or acceptor membranes played a role in modulating StarD4-mediated transport. Here, we used fluorescence-based assays to demonstrate a phosphatidylinositol phosphate (PIP)-selective mechanism by which StarD4 can preferentially extract sterol from liposome membranes containing certain PIPs (especially, PI(4,5)P2 and to a lesser degree PI(3,5)P2). Monophosphorylated PIPs and other anionic lipids had a smaller effect on sterol transport. This enhancement of transport was less effective when the same PIPs were present in the acceptor membranes. Furthermore, using molecular dynamics (MD) simulations, we mapped the key interaction sites of StarD4 with PIP-containing membranes and identified residues that are important for this interaction and for accelerated sterol transport activity. We show that StarD4 recognizes membrane-specific PIPs through specific interaction with the geometry of the PIP headgroup as well as the surrounding membrane environment. Finally, we also observed that StarD4 can deform membranes upon longer incubations. Taken together, these results suggest a mechanism by which PIPs modulate cholesterol transfer activity via StarD4.


Subject(s)
Membrane Transport Proteins , Sterols , Biological Transport , Liposomes/metabolism , Membrane Transport Proteins/metabolism , Phosphatidylinositol Phosphates , Sterols/metabolism
2.
Article in English | MEDLINE | ID: mdl-31917335

ABSTRACT

STARD4, a member of the evolutionarily conserved START gene family, is a soluble sterol transport protein implicated in cholesterol sensing and maintenance of cellular homeostasis. STARD4 is widely expressed and has been shown to transfer sterol between liposomes as well as organelles in cells. However, STARD4 knockout mice lack an obvious phenotype, so the overall role of STARD4 is unclear. To model long term depletion of STARD4 in cells, we use short hairpin RNA technology to stably decrease STARD4 expression in human U2OS osteosarcoma cells (STARD4-KD). We show that STARD4-KD cells display increased total cholesterol, slower cholesterol trafficking between the plasma membrane and the endocytic recycling compartment, and increased plasma membrane fluidity. These effects can all be rescued by transient expression of a short hairpin RNA-resistant STARD4 construct. Some of the cholesterol increase was due to excess storage in late endosomes or lysosomes. To understand the effects of reduced STARD4, we carried out transcriptional and lipidomic profiling of control and STARD4-KD cells. Reduction of STARD4 activates compensatory mechanisms that alter membrane composition and lipid homeostasis. Based on these observations, we propose that STARD4 functions as a critical sterol transport protein involved in sterol sensing and maintaining lipid homeostasis.


Subject(s)
Cholesterol/metabolism , Lipid Metabolism , Membrane Transport Proteins/metabolism , Biological Transport , Cell Line, Tumor , Cell Membrane/metabolism , Endocytosis , Humans , Lipidomics , Membrane Transport Proteins/genetics , RNA Interference , RNA, Small Interfering/genetics
3.
Sci Rep ; 9(1): 6907, 2019 05 06.
Article in English | MEDLINE | ID: mdl-31061420

ABSTRACT

Cystine-knot peptides are attractive templates in drug discovery due to a number of features they possess including their 3D conformation, physicochemical stability and synthetic tractability. Yet, their cellular uptake mechanisms remain largely unexplored. Recently, we demonstrated that the cystine-knot peptide EETI-II is internalized into cells and that its cellular uptake could be modulated by using a protein transfection reagent Xfect. However, the mechanism of Xfect-mediated cellular internalization of EETI-II remained unclear. Here, by using high resolution electron microscopy, we observe the formation of EETI-II-positive macropinosomes and clathrin-coated pits at early time points after treatment of cells with EETI-II/Xfect complexes. Internalized EETI-II subsequently accumulates in intracellular Xfect-induced detergent-resistant membrane compartments which appear to lack characteristic endosomal or lysosomal markers. Notably, Xfect enables the uptake of cell impermeable nuclear dyes into similar intracellular compartments that do not seem to deliver the cargo to the cytosol or nucleus. Altogether, our findings reveal mechanistic insights into the cellular uptake route of Xfect, and underscore the need for the development of effective tools to enhance the cytosolic delivery of cystine-knot peptides. Finally, our data illustrate that electron microscopy is a powerful approach for studying endocytic mechanisms of cell-penetrating peptides and their effects on cellular membranes.


Subject(s)
Cystine , Microscopy, Electron , Peptides/chemistry , Peptides/metabolism , Transfection , Cell Membrane/metabolism , Clathrin/metabolism , Endosomes/metabolism , HeLa Cells , Humans , Lysosomes/metabolism , Permeability , Protein Transport
4.
BMC Biol ; 15(1): 102, 2017 10 31.
Article in English | MEDLINE | ID: mdl-29089042

ABSTRACT

Discoveries spanning several decades have pointed to vital membrane lipid trafficking pathways involving both vesicular and non-vesicular carriers. But the relative contributions for distinct membrane delivery pathways in cell growth and organelle biogenesis continue to be a puzzle. This is because lipids flow from many sources and across many paths via transport vesicles, non-vesicular transfer proteins, and dynamic interactions between organelles at membrane contact sites. This forum presents our latest understanding, appreciation, and queries regarding the lipid transport mechanisms necessary to drive membrane expansion during organelle biogenesis and cell growth.


Subject(s)
Cell Cycle , Lipid Metabolism , Organelle Biogenesis , Biological Transport , Cell Membrane/metabolism
5.
PLoS One ; 12(11): e0188041, 2017.
Article in English | MEDLINE | ID: mdl-29125865

ABSTRACT

The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the biophysical properties of membranes. While the properties of model or isolated membranes have been extensively studied, there has been little evaluation of internal membranes in living cells. Here, we use a Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane order of the plasma membrane and endocytic recycling compartment. We find that after a brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane and the endocytic recycling compartment. The NR12S reports that the endocytic recycling compartment is more highly ordered than the plasma membrane. We also find that the plasma membrane and the endocytic recycling compartment are differentially affected by altering cellular cholesterol levels. The membrane order of the plasma membrane, but not the endocytic recycling compartment, is altered significantly when cellular cholesterol content is increased or decreased by 20%. These results demonstrate that changes in cellular cholesterol differentially alter membrane order within different organelles.


Subject(s)
Cell Membrane/metabolism , Endocytosis , Animals , Cell Compartmentation
6.
ACS Nano ; 11(11): 10689-10703, 2017 11 28.
Article in English | MEDLINE | ID: mdl-28898055

ABSTRACT

Lipid accumulation within the lumen of endolysosomal vesicles is observed in various pathologies including atherosclerosis, liver disease, neurological disorders, lysosomal storage disorders, and cancer. Current methods cannot measure lipid flux specifically within the lysosomal lumen of live cells. We developed an optical reporter, composed of a photoluminescent carbon nanotube of a single chirality, that responds to lipid accumulation via modulation of the nanotube's optical band gap. The engineered nanomaterial, composed of short, single-stranded DNA and a single nanotube chirality, localizes exclusively to the lumen of endolysosomal organelles without adversely affecting cell viability or proliferation or organelle morphology, integrity, or function. The emission wavelength of the reporter can be spatially resolved from within the endolysosomal lumen to generate quantitative maps of lipid content in live cells. Endolysosomal lipid accumulation in cell lines, an example of drug-induced phospholipidosis, was observed for multiple drugs in macrophages, and measurements of patient-derived Niemann-Pick type C fibroblasts identified lipid accumulation and phenotypic reversal of this lysosomal storage disease. Single-cell measurements using the reporter discerned subcellular differences in equilibrium lipid content, illuminating significant intracellular heterogeneity among endolysosomal organelles of differentiating bone-marrow-derived monocytes. Single-cell kinetics of lipoprotein-derived cholesterol accumulation within macrophages revealed rates that differed among cells by an order of magnitude. This carbon nanotube optical reporter of endolysosomal lipid content in live cells confers additional capabilities for drug development processes and the investigation of lipid-linked diseases.


Subject(s)
Atherosclerosis/blood , DNA, Single-Stranded/chemistry , Lipids/chemistry , Nanotubes, Carbon/chemistry , Atherosclerosis/pathology , DNA, Single-Stranded/blood , Endosomes/chemistry , Humans , Luminescent Measurements , Lysosomes/chemistry , Lysosomes/metabolism , Macrophages/chemistry , Macrophages/metabolism , Monocytes/chemistry , Monocytes/metabolism , Niemann-Pick Disease, Type C , Optics and Photonics/instrumentation , Single-Cell Analysis/methods , Transport Vesicles/chemistry , Transport Vesicles/metabolism
7.
Mol Biol Cell ; 28(8): 1111-1122, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28209730

ABSTRACT

Cholesterol is an essential constituent of membranes in mammalian cells. The plasma membrane and the endocytic recycling compartment (ERC) are both highly enriched in cholesterol. The abundance and distribution of cholesterol among organelles are tightly controlled by a combination of mechanisms involving vesicular and nonvesicular sterol transport processes. Using the fluorescent cholesterol analogue dehydroergosterol, we examined sterol transport between the plasma membrane and the ERC using fluorescence recovery after photobleaching and a novel sterol efflux assay. We found that sterol transport between these organelles in a U2OS cell line has a t1/2 =12-15 min. Approximately 70% of sterol transport is ATP independent and therefore is nonvesicular. Increasing cellular cholesterol levels dramatically increases bidirectional transport rate constants, but decreases in cholesterol levels have only a modest effect. A soluble sterol transport protein, STARD4, accounts for ∼25% of total sterol transport and ∼33% of nonvesicular sterol transport between the plasma membrane and ERC. This study shows that nonvesicular sterol transport mechanisms and STARD4 in particular account for a large fraction of sterol transport between the plasma membrane and the ERC.


Subject(s)
Endosomes/metabolism , Membrane Transport Proteins/metabolism , Sterols/metabolism , Animals , Biological Transport , Cell Line, Tumor , Cell Membrane/metabolism , Cholesterol/metabolism , Endocytosis , Ergosterol/analogs & derivatives , Ergosterol/metabolism , Humans , Sheep
8.
Biochem Cell Biol ; 94(6): 499-506, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27421092

ABSTRACT

Cholesterol plays an important role in determining the biophysical properties of membranes in mammalian cells, and the concentration of cholesterol in membranes is tightly regulated. Cholesterol moves among membrane organelles by a combination of vesicular and nonvesicular transport pathways, but the details of these transport pathways are not well understood. In this review, we discuss the mechanisms for nonvesicular sterol transport with an emphasis on the role of STARD4, a small, soluble, cytoplasmic sterol transport protein. STARD4 can rapidly equilibrate sterol between membranes, especially membranes with anionic lipid headgroups. We also discuss the sterol transport in late endosomes and lysosomes, which is mediated by a soluble protein, NPC2, and a membrane protein, NPC1. Homozygous mutations in these proteins lead to a lysosomal lipid storage disorder, Niemann-Pick disease type C. Many of the disease-causing mutations in NPC1 are associated with degradation of the mutant NPC1 proteins in the endoplasmic reticulum. Several histone deacetylase inhibitors have been found to rescue the premature degradation of the mutant NPC1 proteins, and one of these is now in a small clinical trial.


Subject(s)
Carrier Proteins/metabolism , Membrane Glycoproteins/metabolism , Membrane Transport Proteins/metabolism , Sterols/metabolism , Biological Transport , Humans , Intracellular Signaling Peptides and Proteins , Niemann-Pick C1 Protein
9.
J Cell Biol ; 214(1): 61-76, 2016 07 04.
Article in English | MEDLINE | ID: mdl-27354378

ABSTRACT

RAB10 is a regulator of insulin-stimulated translocation of the GLUT4 glucose transporter to the plasma membrane (PM) of adipocytes, which is essential for whole-body glucose homeostasis. We establish SEC16A as a novel RAB10 effector in this process. Colocalization of SEC16A with RAB10 is augmented by insulin stimulation, and SEC16A knockdown attenuates insulin-induced GLUT4 translocation, phenocopying RAB10 knockdown. We show that SEC16A and RAB10 promote insulin-stimulated mobilization of GLUT4 from a perinuclear recycling endosome/TGN compartment. We propose RAB10-SEC16A functions to accelerate formation of the vesicles that ferry GLUT4 to the PM during insulin stimulation. Because GLUT4 continually cycles between the PM and intracellular compartments, the maintenance of elevated cell-surface GLUT4 in the presence of insulin requires accelerated biogenesis of the specialized GLUT4 transport vesicles. The function of SEC16A in GLUT4 trafficking is independent of its previously characterized activity in ER exit site formation and therefore independent of canonical COPII-coated vesicle function. However, our data support a role for SEC23A, but not the other COPII components SEC13, SEC23B, and SEC31, in the insulin stimulation of GLUT4 trafficking, suggesting that vesicles derived from subcomplexes of COPII coat proteins have a role in the specialized trafficking of GLUT4.


Subject(s)
Adipocytes/metabolism , Glucose Transporter Type 4/metabolism , Insulin/pharmacology , Vesicular Transport Proteins/metabolism , rab GTP-Binding Proteins/metabolism , 3T3-L1 Cells , Adipocytes/drug effects , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Endosomes/drug effects , Endosomes/metabolism , GTPase-Activating Proteins/metabolism , Gene Knockdown Techniques , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , Green Fluorescent Proteins/metabolism , Mass Spectrometry , Mice , Models, Biological , Protein Binding/drug effects , Protein Interaction Mapping , Protein Transport/drug effects , Signal Transduction/drug effects
10.
J Lipid Res ; 56(12): 2408-19, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26497473

ABSTRACT

Cholesterol homeostasis is regulated not only by cholesterol, but also by oxygenated cholesterol species, referred to as oxysterols. Side-chain oxysterols, such as 25-hydroxycholesterol (25-HC), regulate cholesterol homeostasis through feedback inhibition and feed-forward activation of transcriptional pathways that govern cholesterol synthesis, uptake, and elimination, as well as through direct nongenomic actions that modulate cholesterol accessibility in membranes. Elucidating the cellular distribution of 25-HC is required to understand its biological activity at the molecular level. However, studying oxysterol distribution and behavior within cells has proven difficult due to the lack of fluorescent analogs of 25-HC that retain its chemical and physical properties. To address this, we synthesized a novel intrinsically fluorescent 25-HC mimetic, 25-hydroxycholestatrienol (25-HCTL). We show that 25-HCTL modulates sterol homeostatic responses in a similar manner as 25-HC. 25-HCTL associates with lipoproteins in media and is taken up by cells through LDL-mediated endocytosis. In cultured cells, 25-HCTL redistributes among cellular membranes and, at steady state, has a similar distribution as cholesterol, being enriched in both the endocytic recycling compartment as well as the plasma membrane. Our findings indicate that 25-HCTL is a faithful fluorescent 25-HC mimetic that can be used to investigate the mechanisms through which 25-HC regulates sterol homeostatic pathways.


Subject(s)
Fluorescent Dyes , Hydroxycholesterols/analysis , Animals , CHO Cells , Cholesterol/analysis , Cricetulus , Humans , Lipid Metabolism
11.
Biochemistry ; 54(30): 4623-36, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26168008

ABSTRACT

The steroidogenic acute regulatory protein-related lipid transfer (START) domain family is defined by a conserved 210-amino acid sequence that folds into an α/ß helix-grip structure. Members of this protein family bind a variety of ligands, including cholesterol, phospholipids, sphingolipids, and bile acids, with putative roles in nonvesicular lipid transport, metabolism, and cell signaling. Among the soluble START proteins, STARD4 is expressed in most tissues and has previously been shown to transfer sterol, but the molecular mechanisms of membrane interaction and sterol binding remain unclear. In this work, we use biochemical techniques to characterize regions of STARD4 and determine their role in membrane interaction and sterol binding. Our results show that STARD4 interacts with anionic membranes through a surface-exposed basic patch and that introducing a mutation (L124D) into the Omega-1 (Ω1) loop, which covers the sterol binding pocket, attenuates sterol transfer activity. To gain insight into the attenuating mechanism of the L124D mutation, we conducted structural and biophysical studies of wild-type and L124D STARD4. These studies show that the L124D mutation reduces the conformational flexibility of the protein, resulting in a diminished level of membrane interaction and sterol transfer. These studies also reveal that the C-terminal α-helix, and not the Ω1 loop, partitions into the membrane bilayer. On the basis of these observations, we propose a model of STARD4 membrane interaction and sterol binding and release that requires dynamic movement of both the Ω1 loop and membrane insertion of the C-terminal α-helix.


Subject(s)
Cell Membrane , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Molecular Dynamics Simulation , Sterols/chemistry , Sterols/metabolism , Amino Acid Substitution , Animals , Cell Membrane/chemistry , Cell Membrane/metabolism , Membrane Transport Proteins/genetics , Mice , Mutation, Missense , Protein Structure, Secondary , Protein Structure, Tertiary
12.
Essays Biochem ; 57: 43-55, 2015.
Article in English | MEDLINE | ID: mdl-25658343

ABSTRACT

Sterols are a critical component of cell membranes of eukaryotes. In mammalian cells there is approximately a six-fold range in the cholesterol content in various organelles. The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the physiochemical properties of membranes. Cholesterol trafficking among organelles is highly dynamic and is mediated by both vesicular and non-vesicular processes. Several proteins have been proposed to mediate inter-organelle trafficking of cholesterol. However, several aspects of the mechanisms involved in regulating trafficking and distribution of cholesterol remain to be elucidated. In the present chapter, we discuss the cellular mechanisms involved in cholesterol distribution and the trafficking processes involved in maintaining sterol homoeostasis.


Subject(s)
Cell Membrane/chemistry , Cholesterol/chemistry , Membrane Transport Proteins/chemistry , Sterol Regulatory Element Binding Proteins/chemistry , Transport Vesicles/chemistry , 1,2-Dipalmitoylphosphatidylcholine/analogs & derivatives , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Animals , Biological Transport , Cell Membrane/metabolism , Endocytosis , Endosomes/chemistry , Endosomes/metabolism , Ergosterol/analogs & derivatives , Ergosterol/chemistry , Fluorescent Dyes , Homeostasis , Humans , Membrane Transport Proteins/metabolism , Models, Chemical , Sphingomyelins/chemistry , Sterol Regulatory Element Binding Proteins/metabolism , Transport Vesicles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...