Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Rheum Dis ; 83(3): 288-299, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37979960

ABSTRACT

OBJECTIVE: Genome-wide association studies have successfully identified more than 100 loci associated with susceptibility to rheumatoid arthritis (RA). However, our understanding of the functional effects of genetic variants in causing RA and their effects on disease severity and response to treatment remains limited. METHODS: In this study, we conducted expression quantitative trait locus (eQTL) analysis to dissect the link between genetic variants and gene expression comparing the disease tissue against blood using RNA-Sequencing of synovial biopsies (n=85) and blood samples (n=51) from treatment-naïve patients with RA from the Pathobiology of Early Arthritis Cohort. RESULTS: This identified 898 eQTL genes in synovium and genes loci in blood, with 232 genes in common to both synovium and blood, although notably many eQTL were tissue specific. Examining the HLA region, we uncovered a specific eQTL at HLA-DPB2 with the critical triad of single-nucleotide polymorphisms (SNPs) rs3128921 driving synovial HLA-DPB2 expression, and both rs3128921 and HLA-DPB2 gene expression correlating with clinical severity and increasing probability of the lympho-myeloid pathotype. CONCLUSIONS: This analysis highlights the need to explore functional consequences of genetic associations in disease tissue. HLA-DPB2 SNP rs3128921 could potentially be used to stratify patients to more aggressive treatment immediately at diagnosis.


Subject(s)
Arthritis, Rheumatoid , Quantitative Trait Loci , Humans , Quantitative Trait Loci/genetics , Genetic Predisposition to Disease , Genotype , Genome-Wide Association Study , Arthritis, Rheumatoid/drug therapy , Polymorphism, Single Nucleotide
2.
Am J Hum Genet ; 110(6): 913-926, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37164005

ABSTRACT

The "omnigenic" hypothesis postulates that the polygenic effects of common SNPs on a typical complex trait are mediated through trans-effects on expression of a relatively sparse set of effector ("core") genes. We tested this hypothesis in a study of 4,964 cases of type 1 diabetes (T1D) and 7,497 controls by using summary statistics to calculate aggregated (excluding the HLA region) trans-scores for gene expression in blood. From associations of T1D with aggregated trans-scores, nine putative core genes were identified, of which three-STAT1, CTLA4 and FOXP3-are genes in which variants cause monogenic forms of autoimmune diabetes. Seven of these genes affect the activity of regulatory T cells, and two are involved in immune responses to microbial lipids. Four T1D-associated genomic regions could be identified as master regulators via trans-effects on gene expression. These results support the sparse effector hypothesis and reshape our understanding of the genetic architecture of T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Humans , Diabetes Mellitus, Type 1/genetics , Multifactorial Inheritance , Genetic Predisposition to Disease , Quantitative Trait Loci/genetics , Polymorphism, Single Nucleotide/genetics
3.
Hepatology ; 75(5): 1081-1094, 2022 05.
Article in English | MEDLINE | ID: mdl-34651315

ABSTRACT

BACKGROUND AND AIMS: Genome-wide association studies (GWAS) have identified several risk loci for gallstone disease. As with most polygenic traits, it is likely that many genetic determinants are undiscovered. The aim of this study was to identify genetic variants that represent new targets for gallstone research and treatment. APPROACH AND RESULTS: We performed a GWAS of 28,627 gallstone cases and 348,373 controls in the UK Biobank, replicated findings in a Scottish cohort (1089 cases, 5228 controls), and conducted a GWA meta-analysis (43,639 cases, 506,798 controls) with the FinnGen cohort. We assessed pathway enrichment using gene-based then gene-set analysis and tissue expression of identified genes in Genotype-Tissue Expression project data. We constructed a polygenic risk score (PRS) and evaluated phenotypic traits associated with the score. Seventy-five risk loci were identified (p < 5 × 10-8 ), of which 46 were new. Pathway enrichment revealed associations with lipid homeostasis, glucuronidation, phospholipid metabolism, and gastrointestinal motility. Anoctamin 1 (ANO1) and transmembrane Protein 147 (TMEM147), both in novel, replicated loci, are expressed in the gallbladder and gastrointestinal tract. Both regulate gastrointestinal motility. The gallstone risk allele rs7599-A leads to suppression of hepatic TMEM147 expression, suggesting that the protein protects against gallstone formation. The highest decile of the PRS demonstrated a 6-fold increased odds of gallstones compared with the lowest decile. The PRS was strongly associated with increased body mass index, serum liver enzymes, and C-reactive protein concentrations, and decreased lipoprotein cholesterol concentrations. CONCLUSIONS: This GWAS demonstrates the polygenic nature of gallstone risk and identifies 46 novel susceptibility loci. We implicate genes influencing gastrointestinal motility in the pathogenesis of gallstones.


Subject(s)
Gallstones , Genome-Wide Association Study , Gallstones/genetics , Gallstones/metabolism , Gastrointestinal Motility , Genetic Predisposition to Disease/genetics , Humans , Polymorphism, Single Nucleotide , White People
SELECTION OF CITATIONS
SEARCH DETAIL
...