Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Food Funct ; 15(6): 2799-2813, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38390666

ABSTRACT

Common buckwheat (CBW) is grown and consumed worldwide. In addition to its already established reputation as an excellent source of nutrients, CBW is gaining popularity as a possible component of functional foods. Whereas human studies remain the gold standard for evaluating the relationship between nutrition and health, the development of reliable in vitro or ex vivo models has made it possible to investigate the cellular and molecular mechanisms of CBW effects on human health. Herein is a systematic review of studies on the biological effect of CBW supplementation, as assessed on various types of cellular models. Although the studies reported here have been conducted in very different experimental conditions, the overall effects of CBW supplementation were found to involve a decrease in cytokine secretion and oxidation products, related mainly to CBW polyphenols and protein or peptide fractions. These chemical species also appeared to be involved in the modulation of cell signaling and hormone secretion. Although further studies are undoubtedly necessary, as is their extension to in vivo systems, these reports suggest that CBW-based foods could be relevant to maintaining and/or improving human health and the quality of life.


Subject(s)
Fagopyrum , Humans , Quality of Life , Cell Culture Techniques , Functional Food , Nutrients
2.
Biofactors ; 49(5): 974-975, 2023.
Article in English | MEDLINE | ID: mdl-37712487
3.
Molecules ; 28(13)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37446878

ABSTRACT

A simple kinetic model allowed for the description of the observed decay of the oxygen content in hypoxic aqueous samples with and without headspace, in the presence of glucose oxidase (Glucox) or laccase and their substrates (glucose for Glucox and ABTS for Laccase). The experimental tests involved both the direct measurement of the oxygen content with a fluorescence-based probe and the indirect stopped-flow spectroscopic detection of colored compounds generated from suitable chromogenic reagents. The complete depletion of dissolved oxygen occurred in the no-headspace samples, whereas some residual oxygen remained in a steady state in the samples with headspace. Simple pseudo-first-order kinetics was adequate to describe the behavior of the system, as long as oxygen was the rate-limiting compound, i.e., in the presence of excess substrates. The values of the kinetic constants drawn from best-fit routines of the data from both experimental approaches were quite comparable. The oxygen residues in the samples with headspace seemed related to the low solubility of O2 in the aqueous phase, especially if compared with the large amount of oxygen in the headspace. The extent of such residue decreased by increasing the concentration of the enzyme. The kinetic model proposed in this paper can be of help in assembling suitable sensors to be used for food safety and quality control.


Subject(s)
Laccase , Oxygen , Laccase/metabolism , Oxidation-Reduction , Kinetics , Spectrum Analysis , Water
4.
Antioxidants (Basel) ; 12(6)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37372014

ABSTRACT

Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid that benefits the prevention of chronic diseases. Due to its high unsaturation, DHA is vulnerable to free radical oxidation, resulting in several unfavorable effects, including producing hazardous metabolites. However, in vitro and in vivo investigations suggest that the relationship between the chemical structure of DHA and its susceptibility to oxidation may not be as clear-cut as previously thought. Organisms have developed a balanced system of antioxidants to counteract the overproduction of oxidants, and the nuclear factor erythroid 2-related factor 2 (Nrf2) is the key transcription factor identified for transmitting the inducer signal to the antioxidant response element. Thus, DHA might preserve the cellular redox status promoting the transcriptional regulation of cellular antioxidants through Nrf2 activation. Here, we systematically summarize the research on the possible role of DHA in controlling cellular antioxidant enzymes. After the screening process, 43 records were selected and included in this review. Specifically, 29 studies related to the effects of DHA in cell cultures and 15 studies concerned the effects of consumption or treatment with DHA in animal. Despite DHA's promising and encouraging effects at modulating the cellular antioxidant response in vitro/in vivo, some differences observed among the reviewed studies may be accounted for by the different experimental conditions adopted, including the time of supplementation/treatment, DHA concentration, and cell culture/tissue model. Moreover, this review offers potential molecular explanations for how DHA controls cellular antioxidant defenses, including involvement of transcription factors and the redox signaling pathway.

5.
Foods ; 12(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37238865

ABSTRACT

Buckwheat is a pseudo-cereal widely grown and consumed throughout the world. Buckwheat is recognized as a good source of nutrients and, in combination with other health-promoting components, is receiving increasing attention as a potential functional food. Despite the high nutritional value of buckwheat, a variety of anti-nutritional features makes it difficult to exploit its full potential. In this framework, sprouting (or germination) may represent a process capable of improving the macromolecular profile, including reducing anti-nutritional factors and/or synthesizing or releasing bioactives. This study addressed changes in the biomolecular profile and composition of buckwheat that was sprouted for 48 and 72 h. Sprouting increased the content of peptides and free-phenolic compounds and the antioxidant activity, caused a marked decline in the concentration of several anti-nutritional components, and affected the metabolomic profile with an overall improvement in the nutritional characteristics. These results further confirm sprouting as a process suitable for improving the compositional traits of cereals and pseudo-cereals, and are further steps towards the exploitation of sprouted buckwheat as a high-quality ingredient in innovative products of industrial interest.

6.
Int J Mol Sci ; 24(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36769058

ABSTRACT

Stilbenoids are anti-inflammatory and antioxidant compounds, with resveratrol being the most investigated molecule in this class. However, the actions of most other stilbenoids are much less studied. This study compares five monomeric (resveratrol, piceatannol, pterostilbene, pinostilbene, and trimethoxy-resveratrol) and two dimeric (dehydro-δ-viniferin and trans-δ-viniferin) stilbenoids for their capability to modulate the production of bacteria-induced cytokines (IL-12, IL-10, and TNF-α), as well as lipopolysaccharide (LPS)-induced reactive oxygen species (ROS), in murine bone marrow-derived dendritic cells. All monomeric species showed dose-dependent inhibition of E. coli-induced IL-12 and TNF-α, whereas only resveratrol and piceatannol inhibited IL-10 production. All monomers, except trimethoxy-resveratrol, inhibited L. acidophilus-induced IL-12, IL-10, and TNF-α production. The dimer dehydro-δ-viniferin remarkably enhanced L. acidophilus-induced IL-12 production. The contrasting effect of resveratrol and dehydro-δ-viniferin on IL-12 production was due, at least in part, to a divergent inactivation of the mitogen-activated protein kinases by the two stilbenoids. Despite having moderate to high total antioxidant activity, dehydro-δ-viniferin was a weak inhibitor of LPS-induced ROS formation. Conversely, resveratrol and piceatannol potently inhibited LPS-induced ROS formation. Methylated monomers showed a decreased antioxidant capacity compared to resveratrol, also depending on the methylation site. In summary, the immune-modulating effect of the stilbenoids depends on both specific structural features of tested compounds and the stimulating bacteria.


Subject(s)
Cytokines , Stilbenes , Mice , Animals , Resveratrol/pharmacology , Lipopolysaccharides/pharmacology , Antioxidants/pharmacology , Interleukin-10 , Reactive Oxygen Species , Tumor Necrosis Factor-alpha , Bone Marrow , Escherichia coli , Stilbenes/pharmacology , Stilbenes/chemistry , Interleukin-12 , Dendritic Cells
7.
Food Chem ; 404(Pt B): 134675, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36323027

ABSTRACT

Waxy (WX) and high-amylose (HA) wheat flours have interesting functional and/or nutritional characteristics, but low technological properties compared to regular wheat. Here a set of three wheat lines, having different amylose content but sharing the same varietal background, were compared to shed light on the role of the amylose/amylopectin ratio on the protein conformational changes that lead to gluten formation. Despite the absence of differences in their protein profile, as also confirmed by thiolomic approaches, both WX and HA lines developed a weaker gluten than the control sample. The altered amylose/amylopectin ratio exerts a matrix effect establishing a competition for water with proteins, leading to a different protein structure and three-dimensional organization of the gluten network. These results add a piece to the understanding of the molecular aspects that oversee matrix effects on gluten formation in wheat, which description can be helpful for a rational optimization of the transformation process.


Subject(s)
Amylose , Starch Synthase , Amylose/chemistry , Amylopectin/chemistry , Starch Synthase/metabolism , Glutens/metabolism , Triticum/chemistry , Starch/chemistry
8.
Foods ; 11(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36553780

ABSTRACT

The effect of pasta-making processes on starch and protein features, as well as cooking behavior, and nutritional properties (i.e., resistant starch and starch in vitro digestibility) were assessed. Pasta from raw red lentils (R) was prepared by conventional extrusion (C_R) and extrusion-cooking (EC_R), whereas heat-treated red lentils (HT) were processed into pasta by conventional extrusion (C_HT). A "high protein" and "high fiber" pasta was prepared. Using HT was effective in increasing the luminosity (that was about 88, 91, and 96 for EC_R, C_R, and C_HT, respectively), and decreasing the presence of defects on the pasta surface (heterogeneity was 5%, 36%, and 45% for C_HT, EC_R, and C_R, respectively). Heat treatment on grains or flour significantly increased starch susceptibility to α-amylase (6.6, 7.4, and 8.6% for C_R, C_HT, and EC_R, respectively) and decreased the final viscosity (from 335 BU in C_R to 287 and 291 BU in EC_R and C_HT), resulting in a significant increase in starch digestibility (slowly digestible starch was about 41, 27, and 26% in C_R, C_HT, and EC_R, respectively). As regards proteins, the main effect on their structure was observed in C_HT, where the cooking behavior was much improved and cooking losses were lowest (5.7%). On the other hand, protein and starch organization in EC_R might have accounted for pasta resistance in overcooking.

9.
Int J Mol Sci ; 23(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36430831

ABSTRACT

Recent evidence links chronic consumption of large amounts of fructose (FRU) with several non-communicable disease. After ingestion, dietary FRU is absorbed into the intestinal tract by glucose transporter (GLUT) 5 and transported to the portal vein via GLUT2. GLUT2 is primarily localized on the basolateral membrane, but GLUT2 may be dislocated post-prandially from the basolateral membrane of intestinal cells to the apical one. Polyphenols (PP) are plant secondary metabolites that exert hypoglycemic properties by modulating intracellular insulin signaling pathways and by inhibiting intestinal enzymes and transporters. Post-prandially, PP may reach high concentrations in the gut lumen, making the inhibition of FRU absorption a prime target for exploring the effects of PP on FRU metabolism. Herein, we have systematically reviewed studies on the effect of PP and PP-rich products on FRU uptake and transport in intestinal cells. In spite of expectations, the very different experimental conditions in the various individual studies do not allow definitive conclusions to be drawn. Future investigations should rely on standardized conditions in order to obtain comparable results that allow a credible rating of polyphenols and polyphenol-rich products as inhibitors of fructose uptake.


Subject(s)
Intestines , Polyphenols , Polyphenols/pharmacology , Biological Transport , Publications , Fructose
10.
IUBMB Life ; 74(7): 723-732, 2022 07.
Article in English | MEDLINE | ID: mdl-35611886

ABSTRACT

This contribution focuses on the earliest steps of the assembly of FeS clusters and their insertion into acceptor apoproteins, that call for transient formation of a 2Fe2S cluster on a scaffold protein from sulfide and iron salts. For the sake of simplicity, this report is essentially limited to the Escherichia coli isc-encoded proteins and does not take into account agents that modulate the enzymatic synthesis of sulfide by protein in the same operon or the redox events associated with both sulfide generation and conversion of 2Fe2S structures in clusters of higher nuclearity. Therefore, the results discussed here are based on chemical reconstitution systems using inorganic sulfide, ferric salts, and excess thiols. This simplification offers the possibility to address some mechanistic issues related to the role of protein/protein interaction as for modulating: (a) the rate of cluster assembly on scaffold proteins; (b) the stability of the cluster on the scaffold protein; and (c) the rate of transfer to acceptor apoproteins as also influenced by the acceptor concentration. The emerging picture highlights the mechanistic versatility of the systems, that is discussed in terms of the capability of such an apparently simple combination of proteins to cope with various physiological situation. The hypothetical mechanism presented here may represent an additional way of modulating the rate and outcome of the overall process while avoiding potential toxicity issues.


Subject(s)
Escherichia coli Proteins , Iron-Sulfur Proteins , Apoproteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Iron/metabolism , Iron-Sulfur Proteins/chemistry , Salts/metabolism , Sulfides/metabolism , Sulfur/metabolism
11.
Molecules ; 27(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35565988

ABSTRACT

Selected food proteins may represent suitable markers for assessing either the presence/absence of specific food ingredients or the type and intensity of food processes. A fundamental step in the quantification of any protein marker is choosing a proper protocol for solubilizing the protein of interest. This step is particularly critical in the case of solid foods and when the protein analyte is prone to undergo intermolecular disulfide exchange reactions with itself or with other protein components in the system as a consequence of process-induced unfolding. In this frame, gluten-based systems represent matrices where a protein network is present and the biomarker proteins may be either linked to other components of the network or trapped into the network itself. The protein biomarkers considered here were wheat gluten toxic sequences for coeliac (QQPFP, R5), wheat germ agglutinin (WGA), and chicken egg ovalbumin (OVA). These proteins were considered here in the frame of three different cases dealing with processes different in nature and severity. Results from individual cases are commented as for: (1) the molecular basis of the observed behavior of the protein; (2) the design of procedure aimed at improving the recovery of the protein biomarker in a form suitable for reliable identification and quantification; (3) a critical analysis of the difficulties associated with the plain transfer of an analytical protocol from one product/process to another. Proper respect for the indications provided by the studies exemplified in this study may prevent coarse errors in assays and vane attempts at estimating the efficacy of a given treatment under a given set of conditions. The cases presented here also indicate that recovery of a protein analyte often does not depend in a linear fashion on the intensity of the applied treatment, so that caution must be exerted when attributing predictive value to the results of a particular study.


Subject(s)
Food Handling , Glutens , Biomarkers/analysis
12.
Food Res Int ; 154: 111012, 2022 04.
Article in English | MEDLINE | ID: mdl-35337570

ABSTRACT

The demand for sustainably produced proteins is increasing with the world population and is prompting a dietary shift toward plant sourced proteins. Vegetable proteins have lower digestibility and biological value compared to animal derived counterparts. We explored sprouting of chickpea seeds as a strategy for improving digestibility. Protein evolution associated with by the sprouting process was assessed by proteomics. The sprouting induced breakdown of seed storage proteins and doubled the release of free alpha-amino nitrogen in sprouted chickpea flour. During sprouting, several enzymes involved in plant development were newly expressed. An ex vivo model of gastroduodenal and jejunal digestion was applied to assess the bioaccessibility of the protein digests. Proteins from chickpea sprouts showed a greater susceptibility to digestion with a 10% increase in alpha amino nitrogen. Peptides with potential immunoreactivity or bioactivity were catalogued in both digested chickpea sprouts and seeds using an in-silico approach. Peptides belonging to the non-specific transfer proteins, which are allergens in pulses, and peptides belonging to an IgE-binding hemagglutinin protein could only be identified in the digested chickpea sprouts. The observation collected paved the way to immune-based evaluations to assess the effect of germination on the allergenic potential.


Subject(s)
Cicer , Animals , Digestion , Flour , Microvilli , Proteome/metabolism
13.
Molecules ; 27(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35164393

ABSTRACT

Bovine milk beta-lactoglobulin (BLG) is a small whey protein that is a common ingredient in many foods. Many of the properties of BLG relevant to the food industry are related to its unfolding processes induced by physical or chemical treatments. Unfolding occurs through a number of individual steps, generating transient intermediates through reversible and irreversible modifications. The rate of formation of these intermediates and of their further evolution into different structures often dictates the outcome of a given process. This report addresses the main structural features of the BLG unfolding intermediates under conditions that may facilitate or impair their formation in response to chemical or physical denaturing agents. In consideration of the short lifespan of the transient species generated upon unfolding, this review also discusses how various methodological approaches may be adapted in exploring the process-dependent structural modifications of BLG from a kinetic and/or a thermodynamic standpoint. Some of the conceptual and methodological approaches presented and discussed in this review can provide hints for improving the understanding of transient conformers formation by proteins present in other food systems, as well as when other physical or chemical denaturing agents are acting on proteins much different from BLG in complex food systems.


Subject(s)
Lactoglobulins/chemistry , Milk/chemistry , Protein Stability , Protein Unfolding , Animals , Cattle , Models, Molecular , Protein Denaturation , Thermodynamics
14.
Molecules ; 27(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35209055

ABSTRACT

Thermal treatments are widely applied to gluten-free (GF) flours to change their functionality. Despite the interest in using pulses in GF formulations, the effects of thermal treatment at the molecular level and their relationship with dough rheology have not been fully addressed. Raw and heat-treated red lentils were tested for starch and protein features. Interactions with water were assessed by thermogravimetric analysis and water-holding capacity. Finally, mixing properties were investigated. The thermal treatment of red lentils induced a structural modification of both starch and proteins. In the case of starch, such changes consequently affected the kinetics of gelatinization. Flour treatment increased the temperature required for gelatinization, and led to an increased viscosity during both gelatinization and retrogradation. Regarding proteins, heat treatment promoted the formation of aggregates, mainly stabilized by hydrophobic interactions between (partially) unfolded proteins. Overall, the structural modifications of starch and proteins enhanced the hydration properties of the dough, resulting in increased consistency during mixing.


Subject(s)
Dietary Proteins/chemistry , Lens Plant/chemistry , Starch/chemistry , Temperature , Cooking , Flour/analysis , Hot Temperature , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Rheology , Spectrum Analysis
15.
Methods Mol Biol ; 2353: 209-229, 2021.
Article in English | MEDLINE | ID: mdl-34292552

ABSTRACT

All Fe-S proteins are characterized by distinctive circular dichroism (CD) features in the visible region of the spectrum due to chiral interaction between the cluster itself and the protein backbone. Therefore, the presence of a CD signal in the visible region relates to the presence of the cluster, whereas the disappearance of the signal refers to cluster breakdown or redox changes. The position of the CD features in the spectrum and the intensity of individual components of the CD signal show great variations among different Fe-S proteins. This feature can provide information on transfer processes between proteins, as well as on possible changes in cluster nuclearity. This method can also be used to detect changes in the chemical nature or spatial organization of cluster ligands that may be concurrent with cluster transfer and associated events.


Subject(s)
Circular Dichroism , Iron-Sulfur Proteins/metabolism , Oxidation-Reduction
16.
Article in English | MEDLINE | ID: mdl-33955824

ABSTRACT

Egg proteins are among the major food allergens. Very often, the same pasta-making plants are used for industrial production of egg-based pasta (EBP) and semolina-only pasta (SP), so that residual egg proteins may be present in SP. This calls for defining the amount of semolina pasta that should be discarded when switching production lines. In this study, the egg proteins content was measured in pasta samples taken at various times after switching production lines from EBP to SP Both long and short pasta shapes were sampled before and after a drying step. Protocols meant to circumvent the difficulties associated with detecting egg proteins in a complex matrix after processing were set up for using commercial ELISA kits to monitor the disappearance of egg proteins from the products. The use of both denaturants and disulphide reductants to solubilise egg proteins was found to be mandatory, as verified by ovalbumin detection by ELISA and by using mass spectrometry to assess residual egg white lysozyme. Appropriate sample preparation protocols were used to monitor the progressive disappearance of egg proteins in the products when shifting production lines in an industrial pasta plant, providing a basis for credible, reliable, and consistent self-control procedures. For lines with a production capacity of 2200-2400 kg h-1, the amount of material to be discarded to ensure that products meet the strictest analytical requirements has been found to be around 2000-3000 kg (for long pasta) and 3000-4000 kg (for short pasta).


Subject(s)
Allergens/analysis , Edible Grain/chemistry , Egg Proteins/analysis , Food Hypersensitivity , Humans , Risk Management
17.
Methods Mol Biol ; 2280: 119-133, 2021.
Article in English | MEDLINE | ID: mdl-33751432

ABSTRACT

Redox titration of flavoproteins allows to detect and analyze (1) the determinants of the stabilization of individual redox forms of the flavin by the protein; (2) the binding of the redox-active cofactor to the protein; (3) the effects of other components of the systems (such as micro- or macromolecular interactors) on parameters 1 and 2; (4) the pattern of electron flow to and from the flavin cofactor to other redox-active chemical species, including those present in the protein itself or in its physiological partners. This overview presents and discusses the fundamentals of the methodological approaches most commonly used for these purposes, and illustrates how data may be obtained in a reliable way, and how they can be read and interpreted.


Subject(s)
Flavoproteins/analysis , Flavoproteins/chemistry , Flavins/metabolism , Kinetics , Oxidation-Reduction
18.
Mol Immunol ; 134: 1-12, 2021 06.
Article in English | MEDLINE | ID: mdl-33676343

ABSTRACT

Methicillin resistant Staphylococcus aureus (MRSA) constitute a serious health care problem worldwide. This study addresses the effect of ß-lactam treatment on the ability of clinically relevant MRSA strains to induce IL-12 and IL-23. MRSA strains induced a dose-dependent IL-12 response in murine bone-marrow-derived dendritic cells that was dependent on endocytosis and acidic degradation. Facilitated induction of IL-12 (but not of IL-23) called for activation of the MAP kinase JNK, and was suppressed by p38. Compromised peptidoglycan structure in cefoxitin-treated bacteria - as denoted by increased sensitivity to mutanolysin -caused a shift from IL-12 towards IL-23. Moreover, cefoxitin treatment of MRSA led to a p38 MAPK-dependent early up-regulation of Dual Specificity Phosphatase (DUSP)-1. Compared to common MRSA, characteristics associated with a persister phenotype increased intracellular survival and upon cefoxitin treatment, the peptidoglycan was not equally compromised and the cytokine induction still required phagosomal acidification. Together, these data demonstrate that ß-lactam treatment changes the MRSA-induced IL-12/IL-23 pattern determined by the activation of JNK and p38. We suggest that accelerated endosomal degradation of the peptidoglycan in cefoxitin-treated MRSA leads to an early expression of DUSP-1 and accordingly, a reduction in the IL-12/IL-23 ratio in dendritic cells. This may influence the clearance of S. aureus.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cefoxitin/pharmacology , Dendritic Cells/immunology , Methicillin-Resistant Staphylococcus aureus/metabolism , Mitogen-Activated Protein Kinases/metabolism , Staphylococcal Infections/metabolism , Animals , Bone Marrow Cells , Interleukin-12/biosynthesis , Interleukin-23/biosynthesis , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/immunology , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinases/drug effects , Signal Transduction/physiology , Staphylococcal Infections/immunology
19.
Plant Foods Hum Nutr ; 75(4): 635-641, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33068217

ABSTRACT

This study aims at understanding the relation among sprouting time (from 12 up to 72 h), changes in protein and starch components, and flour functionality in quinoa. Changes related to the activity of sprouting-related proteases were observed after 48 h of sprouting in all protein fractions. Progressive proteolysis resulted in relevant modification in the organization of quinoa storage proteins, with a concomitant increase in the availability of physiologically relevant metals such as copper and zinc. Changes in the protein profile upon sprouting resulted in improved foam stability, but in impaired foaming capacity. The increased levels of amylolytic enzymes upon sprouting also made starch less prompt to gelatinize upon heating. Consequently, starch re-association in a more ordered structure upon cooling was less effective, resulting in low setback viscosity. The nature and the intensity of these modifications suggest various possibilities as for using flour from sprouted quinoa as an ingredient in the formulation of baked products.


Subject(s)
Chenopodium quinoa , Flour , Starch , Viscosity
20.
Probiotics Antimicrob Proteins ; 12(4): 1330-1339, 2020 12.
Article in English | MEDLINE | ID: mdl-32358640

ABSTRACT

The fate of dietary protein in the gut is determined by microbial and host digestion and utilization. Fermentation of proteins generates bioactive molecules that have wide-ranging health effects on the host. The type of protein can affect amino acid absorption, with animal proteins generally being more efficiently absorbed compared with plant proteins. In contrast to animal proteins, most plant proteins, such as pea protein, are incomplete proteins. Pea protein is low in methionine and contains lower amounts of branched-chain amino acids (BCAAs), which play a crucial role in muscle health. We hypothesized that probiotic supplementation results in favorable changes in the gut microbiota, aiding the absorption of amino acids from plant proteins by the host. Fifteen physically active men (24.2 ± 5.0 years; 85.3 ± 12.9 kg; 178.0 ± 7.6 cm; 16.7 ± 5.8% body fat) co-ingested 20 g of pea protein with either AminoAlta™, a multi-strain probiotic (5 billion CFU L. paracasei LP-DG® (CNCM I-1572) plus 5 billion CFU L. paracasei LPC-S01 (DSM 26760), SOFAR S.p.A., Italy) or a placebo for 2 weeks in a randomized, double-blind, crossover design, separated by a 4-week washout period. Blood samples were taken at baseline and at 30-, 60-, 120-, and 180-min post-ingestion and analyzed for amino acid content. Probiotic administration significantly increased methionine, histidine, valine, leucine, isoleucine, tyrosine, total BCAA, and total EAA maximum concentrations (Cmax) and AUC without significantly changing the time to reach maximum concentrations. Probiotic supplementation can be an important nutritional strategy to improve post-prandial changes in blood amino acids and to overcome compositional shortcomings of plant proteins. ClinicalTrials.gov Identifier: ISRCTN38903788.


Subject(s)
Amino Acids/blood , Dietary Proteins/blood , Intestinal Absorption/drug effects , Lacticaseibacillus paracasei/physiology , Pea Proteins/blood , Probiotics/administration & dosage , Adult , Area Under Curve , Cross-Over Studies , Dietary Proteins/administration & dosage , Double-Blind Method , Gastrointestinal Microbiome/physiology , Humans , Intestinal Absorption/physiology , Male , Pea Proteins/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...