Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-470349

ABSTRACT

The Covid-19 pandemic caused by SARS-CoV-2 infection has highlighted the need for the rapid generation of efficient vaccines for emerging disease. Virus-like particles, VLPs, are an established vaccine technology that produces virus-like mimics, based on expression of the structural proteins of a target virus that can stimulate strong neutralizing antibody responses. SARS-CoV-2 is a coronavirus where the basis of VLP formation has been shown to be the co-expression of the spike, membrane and envelope structural proteins. Here we describe the generation of SARS-CoV-2 VLPs by the co-expression of the salient structural proteins in insect cells using the established baculovirus expression system. VLPs were heterologous [~]100nm diameter enveloped particles with a distinct fringe that reacted strongly with SARS-CoV-2 convalescent sera. In a Syrian hamster challenge model, a non-adjuvanted VLPs induced neutralizing antibodies to the VLP-associated Wuhan S protein, reduced virus shedding following a virulent challenge with SARS-CoV-2 (B.1.1.7 variant) and protected against disease associated weight loss. Immunized animals showed reduced lung pathology and lower challenge virus replication than the non-immunized controls. Our data, using an established and scalable technology, suggest SARS-CoV-2 VLPs offer an efficient vaccine that mitigates against virus load and prevents severe disease.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-109298

ABSTRACT

The newly emergent SARS-CoV-2 coronavirus is closely related to SARS-CoV which emerged in 2002. Studies on coronaviruses in general, and SARS in particular, have identified the virus spike protein (S) as being central to virus tropism, to the generation of a protective antibody response and to the unambiguous detection of past infections. As a result of this centrality SARS-CoV-2 S protein has a role in many aspects of research from vaccines to diagnostic tests. We describe a number of recombinant forms of SARS-CoV-2 S expressed in commonly available expression systems and their preliminary use in diagnostics and epitope mapping. These sources may find use in the current and future analysis of the virus and the Covid-19 disease it causes.

SELECTION OF CITATIONS
SEARCH DETAIL
...