Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 8(32): 17635-17644, 2018 May 14.
Article in English | MEDLINE | ID: mdl-35542079

ABSTRACT

In this study, composite hydrogels with interpenetrated polymer networks (IPNs), based on bacterial cellulose (BC) and poly(acrylic acid-co-N,N'-methylene-bis-acrylamide) (PAA), were synthesized by radical polymerization and characterized herein for the first time. Liquid fertilizer (LF) formulations, containing potassium, phosphorus, ammonium oxides and micronutrients, were encapsulated directly into the IPNs of the composite hydrogels during synthesis. Thermal analyses and scanning electron microscopy of control and composite xerogels highlighted the formation of IPNs between BC and PAA. Swelling determinations confirmed the influence of the crosslinker and of the liquid fertilizer concentration upon the density of the IPNs. Further rheology studies and release profiles indicated how the presence of BC and the increase of the crosslinking density of IPNs improved the mechanical strength and the release profile of LF for the innovative composite BC-PAA hydrogels. Results regarding the fertilizer release indicated that the presence of the BC led to a more controlled liberation of the fertilizer proving that this new formulation is potentially viable for application in agricultural practices.

2.
Sci Technol Adv Mater ; 15(1): 015004, 2014 Feb.
Article in English | MEDLINE | ID: mdl-27877646

ABSTRACT

The core-shell structure in oriented cylindrical rods of polypropylene (PP) and nanoclay composites (NCs) from PP and montmorillonite (MMT) is studied by microbeam small-angle x-ray scattering (SAXS). The structure of neat PP is almost homogeneous across the rod showing regular semicrystalline stacks. In the NCs the discrete SAXS of arranged crystalline PP domains is limited to a skin zone of 300 µm thickness. Even there only frozen-in primary lamellae are detected. The core of the NCs is dominated by diffuse scattering from crystalline domains placed at random. The SAXS of the MMT flakes exhibits a complex skin-core gradient. Both the direction of the symmetry axis and the apparent perfection of flake-orientation are varying. Thus there is no local fiber symmetry, and the structure gradient cannot be reconstructed from a scan across the full rod. To overcome the problem the rods are machined. Scans across the residual webs are performed. For the first time webs have been carved out in two principal directions. Comparison of the corresponding two sets of SAXS patterns demonstrates the complexity of the MMT orientation. Close to the surface (< 1 mm) the flakes cling to the wall. The variation of the orientation distribution widths indicates the presence of both MMT flakes and grains. The grains have not been oriented in the flowing melt. An empirical equation is presented which describes the variation from skin to core of one component of the inclination angle of flake-shaped phyllosilicate filler particles.

SELECTION OF CITATIONS
SEARCH DETAIL
...