Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 22(1): e3002450, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38289899

ABSTRACT

Biological processes are intrinsically noisy, and yet, the result of development-like the species-specific size and shape of organs-is usually remarkably precise. This precision suggests the existence of mechanisms of feedback control that ensure that deviations from a target size are minimized. Still, we have very limited understanding of how these mechanisms operate. Here, we investigate the problem of organ size precision using the Drosophila eye. The size of the adult eye depends on the rates at which eye progenitor cells grow and differentiate. We first find that the progenitor net growth rate results from the balance between their proliferation and apoptosis, with this latter contributing to determining both final eye size and its variability. In turn, apoptosis of progenitor cells is hampered by Dpp, a BMP2/4 signaling molecule transiently produced by early differentiating retinal cells. Our genetic and computational experiments show how the status of retinal differentiation is communicated to progenitors through the differentiation-dependent production of Dpp, which, by adjusting the rate of apoptosis, exerts a feedback control over the net growth of progenitors to reduce final eye size variability.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/genetics , Drosophila melanogaster , Drosophila Proteins/genetics , Organ Size , Feedback , Eye , Retina , Apoptosis/genetics
2.
Development ; 149(23)2022 12 01.
Article in English | MEDLINE | ID: mdl-36355083

ABSTRACT

Morphogens of the Hh family trigger gene expression changes in receiving cells in a concentration-dependent manner to regulate their identity, proliferation, death or metabolism, depending on the tissue or organ. This variety of responses relies on a conserved signaling pathway. Its logic includes a negative-feedback loop involving the Hh receptor Ptc. Here, using experiments and computational models we study and compare the different spatial signaling profiles downstream of Hh in several developing Drosophila organs. We show that the spatial distributions of Ptc and the activator transcription factor CiA in wing, antenna and ocellus show similar features, but are markedly different from that in the compound eye. We propose that these two profile types represent two time points along the signaling dynamics, and that the interplay between the spatial displacement of the Hh source in the compound eye and the negative-feedback loop maintains the receiving cells effectively in an earlier stage of signaling. These results show how the interaction between spatial and temporal dynamics of signaling and differentiation processes may contribute to the informational versatility of the conserved Hh signaling pathway.


Subject(s)
Drosophila , Hedgehog Proteins , Signal Transduction , Drosophila/embryology , Animals , Hedgehog Proteins/physiology , Wings, Animal/embryology , Compound Eye, Arthropod/embryology
3.
Front Cell Dev Biol ; 9: 681933, 2021.
Article in English | MEDLINE | ID: mdl-34350178

ABSTRACT

The size of organs is critical for their function and often a defining trait of a species. Still, how organs reach a species-specific size or how this size varies during evolution are problems not yet solved. Here, we have investigated the conditions that ensure growth termination, variation of final size and the stability of the process for developmental systems that grow and differentiate simultaneously. Specifically, we present a theoretical model for the development of the Drosophila eye, a system where a wave of differentiation sweeps across a growing primordium. This model, which describes the system in a simplified form, predicts universal relationships linking final eye size and developmental time to a single parameter which integrates genetically-controlled variables, the rates of cell proliferation and differentiation, with geometrical factors. We find that the predictions of the theoretical model show good agreement with previously published experimental results. We also develop a new computational model that recapitulates the process more realistically and find concordance between this model and theory as well, but only when the primordium is circular. However, when the primordium is elliptical both models show discrepancies. We explain this difference by the mechanical interactions between cells, an aspect that is not included in the theoretical model. Globally, our work defines the quantitative relationships between rates of growth and differentiation and organ primordium size that ensure growth termination (and, thereby, specify final eye size) and determine the duration of the process; identifies geometrical dependencies of both size and developmental time; and uncovers potential instabilities of the system which might constraint developmental strategies to evolve eyes of different size.

4.
Development ; 146(8)2019 04 25.
Article in English | MEDLINE | ID: mdl-30918051

ABSTRACT

The differentiation of tissues and organs requires that cells exchange information in space and time. Spatial information is often conveyed by morphogens: molecules that disperse across receiving cells to generate signalling gradients. Cells translate such concentration gradients into space-dependent patterns of gene expression and cellular behaviour. But could morphogen gradients also convey developmental time? Here, by investigating the developmental role of Hh on a component of the Drosophila visual system, the ocellar retina, we have discovered that ocellar cells use the non-linear gradient of Hh as a temporal cue, collectively performing the biological equivalent of a mathematical logarithmic transformation. In this way, a morphogen diffusing from a non-moving source is decoded as a wave of differentiating photoreceptors that travels at constant speed throughout the retinal epithelium.


Subject(s)
Body Patterning/physiology , Drosophila Proteins/metabolism , Hedgehog Proteins/metabolism , Signal Transduction/physiology , Animals , Body Patterning/genetics , Drosophila , Drosophila Proteins/genetics , Hedgehog Proteins/genetics , Models, Theoretical , Retina/metabolism , Signal Transduction/genetics
5.
Biol Open ; 6(8): 1155-1164, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28642242

ABSTRACT

Organ size and pattern results from the integration of two positional information systems. One global information system, encoded by the Hox genes, links organ type with position along the main body axis. Within specific organs, local information is conveyed by signaling molecules that regulate organ growth and pattern. The mesothoracic (T2) wing and the metathoracic (T3) haltere of Drosophila represent a paradigmatic example of this coordination. The Hox gene Ultrabithorax (Ubx), expressed in the developing T3, selects haltere identity by, among other processes, modulating the production and signaling efficiency of Dpp, a BMP2-like molecule that acts as a major regulator of size and pattern. However, the mechanisms of the Hox-signal integration in this well-studied system are incomplete. Here, we have investigated this issue by studying the expression and function of the Six3 transcription factor optix during Drosophila wing and haltere development. We find that in both organs, Dpp defines the expression domain of optix through repression, and that the specific position of this domain in wing and haltere seems to reflect the differential signaling profile among these organs. We show that optix expression in wing and haltere primordia is conserved beyond Drosophila in other higher diptera. In Drosophila, optix is necessary for the growth of wing and haltere. In the wing, optix is required for the growth of the most anterior/proximal region (the 'marginal cell') and for the correct formation of sensory structures along the proximal anterior wing margin; the halteres of optix mutants are also significantly reduced. In addition, in the haltere, optix is necessary for the suppression of sensory bristles.

6.
Development ; 144(5): 837-843, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28246213

ABSTRACT

A fundamental question in developmental biology is how organ size is controlled. We have previously shown that the area growth rate in the Drosophila eye primordium declines inversely proportionally to the increase in its area. How the observed reduction in the growth rate is achieved is unknown. Here, we explore the dilution of the cytokine Unpaired (Upd) as a possible candidate mechanism. In the developing eye, upd expression is transient, ceasing at the time when the morphogenetic furrow first emerges. We confirm experimentally that the diffusion and stability of the JAK/STAT ligand Upd are sufficient to control eye disc growth via a dilution mechanism. We further show that sequestration of Upd by ectopic expression of an inactive form of the receptor Domeless (Dome) results in a substantially lower growth rate, but the area growth rate still declines inversely proportionally to the area increase. This growth rate-to-area relationship is no longer observed when Upd dilution is prevented by the continuous, ectopic expression of Upd. We conclude that a mechanism based on the dilution of the growth modulator Upd can explain how growth termination is controlled in the eye disc.


Subject(s)
Cytokines/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Eye/growth & development , Photoreceptor Cells, Invertebrate/physiology , Transcription Factors/metabolism , Animals , Computer Simulation , DNA-Binding Proteins/metabolism , Drosophila melanogaster/genetics , Gene Expression Regulation, Developmental , Kinetics , Mutation , STAT Transcription Factors/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...