Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oecologia ; 201(2): 479-488, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36607451

ABSTRACT

Both the quantity and nutritional quality of food resources can strongly influence the foraging movements of herbivores, which in turn determine the strength of top-down control on primary producer biomass. Nutrient enrichment can alter the biomass and nutritional quality of primary producers, but the consequences for the foraging of herbivores and hence for top-down control are still poorly understood. In this study, we combined a two-factorial experiment (two nutrient levels × grazing by the freshwater gastropod Ancylus fluviatilis) with video analyses tracking grazers' movements to investigate nutrient enrichment effects on spatial ranges of grazing activity and algal biomass removal. Natural stream biofilms were grown in phosphorus-enriched (P+) and phosphorus-poor flumes (P-) for two weeks before A. fluviatilis were added to the flumes and allowed to graze on biofilm for an additional 2 weeks. Total periphyton biomass was enhanced by P+ and reduced by grazer presence. However, the total grazer effect depended on the nutrient level: at the end of the experiment, on average 95% of algal cover were removed by grazing in the P- flumes versus 26% in the P+ flumes. Fast movements of A. fluviatilis were detected significantly more often in the P- treatment, whereas grazers were detected resting more often in the P+ treatment. Our results demonstrate that nutrient enrichment can increase primary producer biomass both directly and indirectly by limiting the foraging ranges of herbivores. The resulting feedback loop between reduced grazing activity and increased plant biomass might in turn exacerbate eutrophication effects on habitat structure.


Subject(s)
Ecosystem , Plants , Animals , Biomass , Nutrients , Phosphorus
2.
Sci Rep ; 11(1): 21621, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34732760

ABSTRACT

Algal biofilms in streams are simultaneously controlled by light and nutrient availability (bottom-up control) and by grazing activity (top-down control). In addition to promoting algal growth, light and nutrients also determine the nutritional quality of algae for grazers. While short-term experiments have shown that grazers increase consumption rates of nutrient-poor algae due to compensatory feeding, nutrient limitation in the long run can constrain grazer growth and hence limit the strength of grazing activity. In this study, we tested the effects of light and phosphorus availability on grazer growth and thus on the long-term control of algal biomass. At the end of the experiment, algal biomass was significantly affected by light, phosphorus and grazing, but the interactive effects of the three factors significantly changed over time. At both high light and phosphorus supply, grazing did not initially reduce algal biomass, but the effect of grazing became stronger in the final three weeks of the experiment. Snail growth was enhanced by light, rather than phosphorus, suggesting that algal quantity rather than quality was the main limiting factor for grazer growth. Our results highlight the role of feedback effects and the importance of long-term experiments in the study of foodweb interactions.


Subject(s)
Biofilms/growth & development , Chlorella vulgaris/growth & development , Ecosystem , Eutrophication , Microalgae/growth & development , Rivers/chemistry , Snails/physiology , Animals , Light , Nitrogen/metabolism , Phosphorus/metabolism
3.
J Phycol ; 56(6): 1687-1695, 2020 12.
Article in English | MEDLINE | ID: mdl-32738149

ABSTRACT

Phosphorus enrichment of stream ecosystems generally increases primary production in the benthos, but the consequences of eutrophication for the nutritional quality of periphyton for grazers are less clear. On short timescales, high phosphorus inputs may lead to reduced C:P ratios and high essential fatty acid contents of periphyton, which are both considered important determinants of food quality for grazers. However, nutrient enrichment may alter the taxonomic composition of periphyton and favor the growth of less palatable algal taxa. In this study, periphyton was grown under a gradient of dissolved phosphorus availability from 5 to 100 µg P · L-1 , to investigate eutrophication effects on periphyton taxonomy, C:N:P stoichiometry, and fatty acid composition. After 1 month, periphyton grown under oligotrophic conditions was mainly composed of diatoms (~86%). With increasing phosphorus availability, diatoms were gradually outcompeted by chlorophytes and cyanobacteria, which were the predominant taxon under eutrophic conditions. Unexpectedly, periphyton C:P ratios increased with greater phosphorus supply, from ~280 under oligotrophic conditions up to ~790 at 100 µg · L-1 , reflecting a tendency of chlorophytes and cyanobacteria to produce more biomass per unit of assimilated phosphorus compared to diatoms. Periphyton content of essential polyunsaturated fatty acids relative to biomass followed a unimodal relationship with phosphorus availability and peaked at intermediate phosphorus levels, likely as a result of both taxonomic and nutrient effects. Our results demonstrate that phosphorus-driven eutrophication of freshwater ecosystems may worsen periphyton nutritional quality due to taxonomic sorting, which may further lead to lower growth and reproduction of herbivores.


Subject(s)
Periphyton , Phosphorus , Biomass , Ecosystem , Fatty Acids , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL
...