Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Life Sci Alliance ; 7(5)2024 May.
Article in English | MEDLINE | ID: mdl-38479814

ABSTRACT

Entry into mitosis requires not only correct DNA replication but also extensive cell reorganization, including the separation of the Golgi ribbon into isolated stacks. To understand the significance of pre-mitotic Golgi reorganization, we devised a strategy to first block Golgi segregation, with the consequent G2-arrest, and then force entry into mitosis. We found that the cells forced to enter mitosis with an intact Golgi ribbon showed remarkable cell division defects, including spindle multipolarity and binucleation. The spindle defects were caused by reduced levels at the centrosome of the kinase Aurora-A, a pivotal spindle formation regulator controlled by Golgi segregation. Overexpression of Aurora-A rescued spindle formation, indicating a crucial role of the Golgi-dependent recruitment of Aurora-A at the centrosome. Thus, our results reveal that alterations of the pre-mitotic Golgi segregation in G2 have profound consequences on the fidelity of later mitotic processes and represent potential risk factors for cell transformation and cancer development.


Subject(s)
Cytokinesis , Mitosis , Golgi Apparatus , Centrosome
2.
Cells ; 11(3)2022 01 21.
Article in English | MEDLINE | ID: mdl-35159164

ABSTRACT

The Golgi complex of mammalian cells is organized in a ribbon-like structure often closely associated with the centrosome during interphase. Conversely, the Golgi complex assumes a fragmented and dispersed configuration away from the centrosome during mitosis. The structure of the Golgi complex and the relative position to the centrosome are dynamically regulated by microtubules. Many pieces of evidence reveal that this microtubule-mediated dynamic association between the Golgi complex and centrosome is of functional significance in cell polarization and division. Here, we summarize findings indicating how the Golgi complex and the centrosome cooperate in organizing the microtubule network for the directional protein transport and centrosome positioning required for cell polarization and regulating fundamental cell division processes.


Subject(s)
Centrosome , Golgi Apparatus , Animals , Cell Cycle/physiology , Centrosome/metabolism , Cytoskeleton , Golgi Apparatus/metabolism , Mammals , Microtubules/metabolism , Mitosis
3.
Int J Biol Macromol ; 121: 77-88, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30261256

ABSTRACT

Four 4-nitrophenyl-functionalized benzofuran (BF1, BF2) and benzodifuran (BDF1, BDF2) compounds were synthesized by a convenient route based on the Craven reaction. All the compounds underwent a detailed chemical-physical characterization to evaluate their structural, thermal and optical properties. An investigation on the therapeutic potential of the reported compounds was performed by analyzing their antiproliferative activity on prostatic tumour cells (PC-3). In both classes of compounds, anticancer potential is in direct correlation with the lipophilicity. From our study it emerged that antiproliferative activity was higher for benzofuran derivatives as compared to benzodifuran systems. Moreover, we report a mechanistic study relative to the most promising molecule, i.e. the apolar benzofuran BF1, that relates the antiproliferative properties found in our investigation to its ability to bind telomeric DNA (proven by CD and fluorescence techniques on tel22 G4 DNA), and highlights its unexpected impact on cell cycle progression.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Benzofurans/chemistry , Benzofurans/pharmacology , DNA/metabolism , Nitrophenols/chemistry , Telomere/genetics , Antineoplastic Agents/metabolism , Benzofurans/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , PC-3 Cells , S Phase Cell Cycle Checkpoints/drug effects , Structure-Activity Relationship
4.
Sci Rep ; 7(1): 17474, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29234063

ABSTRACT

The lipid phosphatase Ship2 represents a drug discovery target for the treatment of different diseases, including cancer. Its C-terminal sterile alpha motif domain (Ship2-Sam) associates with the Sam domain from the EphA2 receptor (EphA2-Sam). This interaction is expected to mainly induce pro-oncogenic effects in cells therefore, inhibition of the Ship2-Sam/EphA2-Sam complex may represent an innovative route to discover anti-cancer therapeutics. In the present work, we designed and analyzed several peptide sequences encompassing the interaction interface of EphA2-Sam for Ship2-Sam. Peptide conformational analyses and interaction assays with Ship2-Sam conducted through diverse techniques (CD, NMR, SPR and MST), identified a positively charged penta-amino acid native motif in EphA2-Sam, that once repeated three times in tandem, binds Ship2-Sam. NMR experiments show that the peptide targets the negatively charged binding site of Ship2-Sam for EphA2-Sam. Preliminary in vitro cell-based assays indicate that -at 50 µM concentration- it induces necrosis of PC-3 prostate cancer cells with more cytotoxic effect on cancer cells than on normal dermal fibroblasts. This work represents a pioneering study that opens further opportunities for the development of inhibitors of the Ship2-Sam/EphA2-Sam complex for therapeutic applications.


Subject(s)
Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/antagonists & inhibitors , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Receptor, EphA2/antagonists & inhibitors , Receptor, EphA2/metabolism , Sterile Alpha Motif , Antineoplastic Agents/pharmacology , Binding Sites , Cell Line, Tumor , Drug Design , Escherichia coli , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Male , Membrane Proteins , Models, Molecular , Necrosis/chemically induced , Necrosis/metabolism , Nuclear Magnetic Resonance, Biomolecular , Peptides/chemistry , Peptides/pharmacology , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/chemistry , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Preliminary Data , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Protein Binding , Receptor, EphA2/chemistry , Receptor, EphA2/genetics , Saccharomyces cerevisiae Proteins , Sterile Alpha Motif/drug effects
5.
Amino Acids ; 49(8): 1347-1353, 2017 08.
Article in English | MEDLINE | ID: mdl-28478584

ABSTRACT

Here we describe the synthesis, chromatographic purification, MS and NMR characterization of a new lactosyl-derivative, i.e. a lactosyl thiophenyl-substituted triazolyl-thione L-alanine (Lac-L-TTA). This amino acid-sugar conjugate was prepared by solution synthesis in analogy to the natural fructosyl-amino acids. Furthermore, we investigated the inhibition of PC-3 prostate cancer cell colony formation by this lactose derivative in comparison with the less polar fructose-based derivative, Fru-L-TTA. This let us to compare the properties of the artificial derivative, object of the present work, with the monosaccharide-based counterpart and to obtain a preliminary information on the influence of polarity on such biological activity. A significantly higher anticancer effect of Lac-L-TTA with respect to the fructose analogue emerged from our study suggesting that the anti-metastatic potential of fructosyl-amino acids can be enhanced by increasing the polarity of the compounds, for example by introducing disaccharide moieties in place of fructose.


Subject(s)
Alanine/pharmacology , Amino Acids/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Lactose/chemistry , Prostatic Neoplasms/drug therapy , Sugars/chemistry , Alanine/chemistry , Antineoplastic Agents/chemistry , Colony-Forming Units Assay , Humans , Lactose/pharmacology , Male , Neoplasm Metastasis , Prostatic Neoplasms/pathology , Tumor Cells, Cultured
6.
Amino Acids ; 49(2): 327-335, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27864693

ABSTRACT

Here, we report the synthesis, purification, ESI MS and NMR characterization, as well as the SEM analysis of a fructosyl thiophenyl-substituted triazolyl-thione L-alanine (denominated Fru-L-TTA). This novel fructosyl derivative was obtained by solution synthesis using the Amadori reaction, in analogy to other natural fructosyl-amino acids, and fully characterized. In particular, we report an accurate NMR/MS/SEM characterization of Fru-L-TTA alongside some biological properties, and investigated to compare the properties of the artificial derivative of this work with the natural counterparts. In particular, Fru-L-TTA shares with natural fructosyl-amino acids the possibility to inhibit the colony formation of prostate cancer cells and additionally decreases their migration.


Subject(s)
Alanine/analogs & derivatives , Antineoplastic Agents/pharmacology , Fructose/analogs & derivatives , Alanine/chemistry , Alanine/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Movement/drug effects , Chemistry Techniques, Synthetic , Copper/metabolism , Drug Screening Assays, Antitumor/methods , Fructose/chemistry , Fructose/pharmacology , Humans , Magnetic Resonance Spectroscopy , Male , Microscopy, Electron, Scanning , Prostatic Neoplasms/drug therapy , Spectrometry, Mass, Electrospray Ionization
7.
Int J Mol Sci ; 17(10)2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27669226

ABSTRACT

The proteasome is a multienzymatic complex that controls the half-life of the majority of intracellular proteins, including those involved in apoptosis and cell-cycle progression. Recently, proteasome inhibition has been shown to be an effective anticancer strategy, although its downregulation is often accompanied by severe undesired side effects. We previously reported that the inhibition of acylpeptide hydrolase (APEH) by the peptide SsCEI 4 can significantly affect the proteasome activity in A375 melanoma or Caco-2 adenocarcinoma cell lines, thus shedding new light on therapeutic strategies based on downstream regulation of proteasome functions. In this work, we investigated the functional correlation between APEH and proteasome in a panel of cancer cell lines, and evaluated the cell proliferation upon SsCEI 4-treatments. Results revealed that SsCEI 4 triggered a proliferative arrest specifically in osteosarcoma U2OS cells via downregulation of the APEH-proteasome system, with the accumulation of the typical hallmarks of proteasome: NF-κB, p21(Waf1), and polyubiquitinylated proteins. We found that the SsCEI 4 anti-proliferative effect involved a senescence-like growth arrest without noticeable cytotoxicity. These findings represent an important step toward understanding the mechanism(s) underlying the APEH-mediated downregulation of proteasome in order to design new molecules able to efficiently regulate the proteasome system for alternative therapeutic strategies.


Subject(s)
Peptide Hydrolases/metabolism , Proteasome Endopeptidase Complex/metabolism , Caco-2 Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cellular Senescence/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Down-Regulation/drug effects , Enzyme Inhibitors/pharmacology , Humans , NF-kappa B/metabolism , Osteosarcoma/metabolism , Osteosarcoma/pathology , Peptide Hydrolases/chemistry , Peptide Hydrolases/genetics , Peptides/pharmacology , RNA, Messenger/metabolism
8.
Int J Mol Sci ; 16(9): 21342-62, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26370966

ABSTRACT

Nodal is a potent embryonic morphogen belonging to the TGF-ß superfamily. Typically, it also binds to the ALK4/ActRIIB receptor complex in the presence of the co-receptor Cripto-1. Nodal expression is physiologically restricted to embryonic tissues and human embryonic stem cells, is absent in normal cells but re-emerges in several human cancers, including melanoma, breast, and colon cancer. Our aim was to obtain mAbs able to recognize Nodal on a major CBR (Cripto-Binding-Region) site and to block the Cripto-1-mediated signalling. To achieve this, antibodies were raised against hNodal(44-67) and mAbs generated by the hybridoma technology. We have selected one mAb, named 3D1, which strongly associates with full-length rhNodal (KD 1.4 nM) and recognizes the endogenous protein in a panel of human melanoma cell lines by western blot and FACS analyses. 3D1 inhibits the Nodal-Cripto-1 binding and blocks Smad2/3 phosphorylation. Data suggest that inhibition of the Nodal-Cripto-1 axis is a valid therapeutic approach against melanoma and 3D1 is a promising and interesting agent for blocking Nodal-Cripto mediated tumor development. These findings increase the interest for Nodal as both a diagnostic and prognostic marker and as a potential new target for therapeutic intervention.


Subject(s)
Antibodies, Monoclonal/chemistry , Models, Molecular , Nodal Protein/chemistry , Protein Structure, Secondary , Amino Acid Sequence , Antibodies, Monoclonal/pharmacology , Epitope Mapping/methods , Epitopes/chemistry , Epitopes/metabolism , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/metabolism , Growth Differentiation Factors/chemistry , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/metabolism , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/metabolism , Molecular Sequence Data , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Nodal Protein/antagonists & inhibitors , Nodal Protein/metabolism , Peptides/chemical synthesis , Peptides/chemistry , Peptides/isolation & purification , Peptides/metabolism , Protein Binding
9.
Int J Pharm ; 473(1-2): 194-202, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25014371

ABSTRACT

Pure sterically stabilized micelles (SSM) of DSPE-PEG2000, and sterically stabilized mixed micelles (SSMM) containing PC or DOPC phospholipids (5, 10 or 20% mol/mol with respect to DSPE-PEG2000) are developed as delivery systems for the gold based cytotoxic drug Au(III)-dithiocarbamato complex AuL12. In particular, SSMM containing 5% of PC at 5mM of lipid concentration encapsulates 61.0 µg of AuL12 with a DL% of 1.13. The gold complex remains stable up to 72 h when incorporated in the aggregate, as indicated by UV-vis measurements. Incorporation in micelle composition of a low amount of the peptide derivative MonY-BN-AA1, containing a bombesin peptide analogue does not influence structural parameters of the micelles (diameter around 20 nm) neither the AuL12 loading parameters. Target selective properties of the peptide containing full aggregate on PC-3 cells overexpressing the GRP/bombesin receptors are observed by in vitro cytotoxic studies: a decrease of cell viability, ∼ 50%, is obtained in cells treated with AuL12-targeted micelles at 10 µM drug concentration for 48 h with respect to untargeted micelles.


Subject(s)
Antineoplastic Agents/chemistry , Cisplatin/chemistry , Coordination Complexes/chemistry , Gold/chemistry , Micelles , Phosphatidylethanolamines/chemistry , Polyethylene Glycols/chemistry , Receptors, Bombesin/metabolism , Antineoplastic Agents/pharmacology , Bombesin/analogs & derivatives , Bombesin/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Cisplatin/pharmacology , Coordination Complexes/pharmacology , Gold/pharmacology , Humans , Peptide Fragments/chemistry , Phosphatidylcholines/chemistry
10.
Cancer Treat Res ; 159: 185-205, 2014.
Article in English | MEDLINE | ID: mdl-24114481

ABSTRACT

Increased consumption of fruits and vegetables can represent an easy strategy to significantly reduce the incidence of cancer. From this observation, derived mostly from epidemiological data, the new field of chemoprevention has emerged in the primary and secondary prevention of cancer. Chemoprevention is defined as the use of natural or synthetic compounds able to stop, reverse, or delay the process of tumorigenesis in its early stages. A large number of phytochemicals are potentially capable of simultaneously inhibiting and modulating several key factors regulating cell proliferation in cancer cells. Quercetin is a flavonoid possessing potential chemopreventive properties. It is a functionally pleiotropic molecule, possessing multiple intracellular targets, affecting different cell signaling processes usually altered in cancer cells, with limited toxicity on normal cells. Simultaneously targeting multiple pathways may help to kill malignant cells and slow down the onset of drug resistance. Among the different substrates triggered by quercetin, we have reviewed the ability of the molecule to inhibit protein kinases involved in deregulated cell growth in cancer cells.


Subject(s)
Antioxidants/therapeutic use , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Quercetin/therapeutic use , Signal Transduction/drug effects , Animals , Humans , Neoplasms/enzymology
11.
Dose Response ; 11(3): 401-12, 2012.
Article in English | MEDLINE | ID: mdl-23983667

ABSTRACT

Radiations may trigger protective response within a threshold of doses applied. Exposures above an upper threshold are generally detrimental, while exposures below a lower threshold may or may not increase risks for health. We recently reported that a cellular protective response occurs in interventional cardiologists to counteract the oxidative damage caused by radiation. Here, we demonstrated in an in vitro model represented by whole blood of healthy donors γ-irradiated with 220-440 mGy, that haemolysis of erythrocytes induced by hypochlorous acid was reduced by 40%. The protection triggered by γ-radiations made erythrocytes more resistant to oxidative insult caused by hypochlorous acid which was induced 3 h after irradiation and involved biochemical changes in the synthesis and turnover of glutathione. Overall, the biochemical remodelling induced by exposure to γ-radiations might contribute to generate new guidelines in professionally exposed workers.

SELECTION OF CITATIONS
SEARCH DETAIL
...