Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 31(20): 2972-4, 2006 Oct 15.
Article in English | MEDLINE | ID: mdl-17001370

ABSTRACT

Finite-difference time-domain (FDTD) methods suffer from reduced accuracy when modeling discontinuous dielectric materials, due to the inhererent discretization (pixelization). We show that accuracy can be significantly improved by using a subpixel smoothing of the dielectric function, but only if the smoothing scheme is properly designed. We develop such a scheme based on a simple criterion taken from perturbation theory and compare it with other published FDTD smoothing methods. In addition to consistently achieving the smallest errors, our scheme is the only one that attains quadratic convergence with resolution for arbitrarily sloped interfaces. Finally, we discuss additional difficulties that arise for sharp dielectric corners.

2.
Opt Lett ; 30(23): 3192-4, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16342717

ABSTRACT

We demonstrate by finite-difference time-domain simulations in 2D and 3D that optical cavities in realistic finite photonic crystals have lifetimes and modal volumes that are essentially insensitive to disorder (of various types, including surface disorder and randomized positions), even with unphysically large disorder. A lifetime Q = 10(8) is demonstrated in a 3D single-mode cavity with a half-wavelength mode diameter using only eight vertical periods of a disordered crystal.

3.
Phys Rev Lett ; 92(6): 063903, 2004 Feb 13.
Article in English | MEDLINE | ID: mdl-14995240

ABSTRACT

We show that modes of axially uniform waveguides of arbitrary cross section can be made to have anomalous dispersion relations resulting from strong repulsion between two modes. When the axial wave vector k is 0, the two modes have different TE/TM symmetry and thus can be brought arbitrarily close to an accidental frequency degeneracy. For nonzero k, the symmetry is broken causing the modes to repel. When the modes are sufficiently close together this repulsion leads to unusual features such as extremely flattened dispersion relations, backward waves, zero group velocity for nonzero k, atypical divergence of the density of states, and nonzero group velocity at k=0.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(6 Pt 2): 066611, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12188855

ABSTRACT

Perturbation theory permits the analytic study of small changes on known solutions, and is especially useful in electromagnetism for understanding weak interactions and imperfections. Standard perturbation-theory techniques, however, have difficulties when applied to Maxwell's equations for small shifts in dielectric interfaces (especially in high-index-contrast, three-dimensional systems) due to the discontinuous field boundary conditions--in fact, the usual methods fail even to predict the lowest-order behavior. By considering a sharp boundary as a limit of anisotropically smoothed systems, we are able to derive a correct first-order perturbation theory and mode-coupling constants, involving only surface integrals of the unperturbed fields over the perturbed interface. In addition, we discuss further considerations that arise for higher-order perturbative methods in electromagnetism.

5.
Opt Express ; 9(13): 748-79, 2001 Dec 17.
Article in English | MEDLINE | ID: mdl-19424314

ABSTRACT

We present the light-propagation characteristics of OmniGuide fibers, which guide light by concentric multi-layer dielectric mirrors having the property of omnidirectional reflection. We show how the lowest-loss TE_01 mode can propagate in a single-mode fashion through even large-core fibers, with other modes eliminated asymptotically by their higher losses and poor coupling, analogous to hollow metallic microwave waveguides. Dispersion, radiation leakage, material absorption, nonlinearities, bending, acircularity, and interface roughness are considered with the help of leaky modes and perturbation theory, and both numerical results and general scaling relations are presented. We show that cladding properties such as absorption and nonlinearity are suppressed by many orders of magnitude due to the strong confinement in a hollow core, and other imperfections are tolerable, promising that the properties of silica fibers may be surpassed even when nominally poor materials are employed.

6.
Science ; 289(5478): 415-419, 2000 Jul 21.
Article in English | MEDLINE | ID: mdl-10903194

ABSTRACT

An all-dielectric coaxial waveguide that can overcome problems of polarization rotation and pulse broadening in the transmission of optical light is presented here. It consists of a coaxial waveguiding region with a low index of refraction, bounded by two cylindrical, dielectric, multilayer, omnidirectional reflecting mirrors. The waveguide can be designed to support a single mode whose properties are very similar to the unique transverse electromagnetic mode of a traditional metallic coaxial cable. The new mode has radial symmetry and a point of zero dispersion. Moreover, because the light is not confined by total internal reflection, the waveguide can guide light around very sharp corners.

SELECTION OF CITATIONS
SEARCH DETAIL
...