Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 337(6100): 1360-1364, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22984074

ABSTRACT

The Arabidopsis thaliana central cell, the companion cell of the egg, undergoes DNA demethylation before fertilization, but the targeting preferences, mechanism, and biological significance of this process remain unclear. Here, we show that active DNA demethylation mediated by the DEMETER DNA glycosylase accounts for all of the demethylation in the central cell and preferentially targets small, AT-rich, and nucleosome-depleted euchromatic transposable elements. The vegetative cell, the companion cell of sperm, also undergoes DEMETER-dependent demethylation of similar sequences, and lack of DEMETER in vegetative cells causes reduced small RNA-directed DNA methylation of transposons in sperm. Our results demonstrate that demethylation in companion cells reinforces transposon methylation in plant gametes and likely contributes to stable silencing of transposable elements across generations.


Subject(s)
Arabidopsis/genetics , DNA Methylation , DNA Transposable Elements/genetics , Gene Expression Regulation, Plant , Gene Silencing , Germ Cells, Plant/metabolism , Arabidopsis/cytology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA, Plant/metabolism , Endosperm/cytology , Endosperm/genetics , N-Glycosyl Hydrolases/genetics , N-Glycosyl Hydrolases/metabolism , RNA, Plant/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
2.
Science ; 324(5933): 1451-4, 2009 Jun 12.
Article in English | MEDLINE | ID: mdl-19520962

ABSTRACT

Parent-of-origin-specific (imprinted) gene expression is regulated in Arabidopsis thaliana endosperm by cytosine demethylation of the maternal genome mediated by the DNA glycosylase DEMETER, but the extent of the methylation changes is not known. Here, we show that virtually the entire endosperm genome is demethylated, coupled with extensive local non-CG hypermethylation of small interfering RNA-targeted sequences. Mutation of DEMETER partially restores endosperm CG methylation to levels found in other tissues, indicating that CG demethylation is specific to maternal sequences. Endosperm demethylation is accompanied by CHH hypermethylation of embryo transposable elements. Our findings demonstrate extensive reconfiguration of the endosperm methylation landscape that likely reinforces transposon silencing in the embryo.


Subject(s)
Arabidopsis/embryology , Arabidopsis/genetics , DNA Methylation , DNA Transposable Elements , Genome, Plant , Genomic Imprinting , Seeds/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA, Plant/genetics , DNA, Plant/metabolism , Gene Expression Regulation, Plant , Gene Silencing , Genes, Plant , N-Glycosyl Hydrolases/genetics , N-Glycosyl Hydrolases/metabolism , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Repetitive Sequences, Nucleic Acid , Seeds/growth & development , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Initiation Site
3.
Proc Natl Acad Sci U S A ; 101(13): 4441-6, 2004 Mar 30.
Article in English | MEDLINE | ID: mdl-15070737

ABSTRACT

Potassium channels are widely distributed. To serve their physiological functions, such as neuronal signaling, control of insulin release, and regulation of heart rate and blood flow, it is essential that K+ channels allow K+ but not the smaller and more abundant Na+ ions to go through. The narrowest part of the channel pore, the selectivity filter formed by backbone carbonyls of the GYG-containing K+ channel signature sequence, approximates the hydration shell of K+ ions. However, the K+ channel signature sequence is not sufficient for K+ selectivity. To identify structural elements important for K+ selectivity, we randomly mutagenized the G protein-coupled inwardly rectifying potassium channel 3.2 (GIRK2) bearing the S177W mutation on the second transmembrane segment. This mutation confers constitutive channel activity but abolishes K+ selectivity and hence the channel's ability to complement the K+ transport deficiency of Deltatrk1Deltatrk2 mutant yeast. S177W-containing GIRK2 mutants that support yeast growth in low-K+ medium contain multiple suppressors, each partially restoring K+ selectivity to S177W-containing double mutants. These suppressors include mutations in the first transmembrane segment and the pore helix, likely exerting long-range actions to restore K+ selectivity, as well as a mutation of a second transmembrane segment residue facing the cytoplasmic half of the pore, below the selectivity filter. Some of these suppressors also affected channel gating (channel open time and opening frequency determined in single-channel analyses), revealing intriguing interplay between ion permeation and channel gating.


Subject(s)
Potassium Channels, Inwardly Rectifying , Potassium Channels , Amino Acid Substitution , Animals , G Protein-Coupled Inwardly-Rectifying Potassium Channels , Models, Molecular , Mutagenesis, Site-Directed , Oocytes/physiology , Patch-Clamp Techniques , Potassium Channels/chemistry , Potassium Channels/physiology , Protein Conformation , Protein Structure, Secondary , Restriction Mapping , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...