Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 11(11)2021 11 02.
Article in English | MEDLINE | ID: mdl-34827617

ABSTRACT

Cellular homeostasis depends on robust protein quality control (PQC) pathways that discern misfolded proteins from functional ones in the cell. One major branch of PQC involves the controlled degradation of misfolded proteins by the ubiquitin-proteasome system. Here ubiquitin ligases must recognize and bind to misfolded proteins with sufficient energy to form a complex and with an adequate half-life to achieve poly-ubiquitin chain formation, the signal for protein degradation, prior to its dissociation from the ligase. It is not well understood how PQC ubiquitin ligases accomplish these tasks. Employing a fully reconstituted enzyme and substrate system to perform quantitative biochemical experiments, we demonstrate that the yeast PQC ubiquitin ligase San1 contains multiple substrate binding sites along its polypeptide chain that appear to display specificity for unique misfolded proteins. The results are consistent with a model where these substrate binding sites enable San1 to bind to misfolded substrates avidly, resulting in high affinity ubiquitin ligase-substrate complexes.


Subject(s)
Saccharomyces cerevisiae , Ubiquitin , Proteasome Endopeptidase Complex , Ubiquitin-Protein Ligases
2.
Mol Biol Cell ; 31(3): 221-233, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31825716

ABSTRACT

Protein misfolding is a recurring phenomenon that cells must manage; otherwise misfolded proteins can aggregate and become toxic should they persist. To counter this burden, cells have evolved protein quality control (PQC) mechanisms that manage misfolded proteins. Two classes of systems that function in PQC are chaperones that aid in protein folding and ubiquitin-protein ligases that ubiquitinate misfolded proteins for proteasomal degradation. How folding and degradative PQC systems interact and coordinate their respective functions is not yet fully understood. Previous studies of PQC degradation pathways in the endoplasmic reticulum and cytosol have led to the prevailing idea that these pathways require the activity of Hsp70 chaperones. Here, we find that involvement of the budding yeast Hsp70 chaperones Ssa1 and Ssa2 in nuclear PQC degradation varies with the substrate. In particular, nuclear PQC degradation mediated by the yeast ubiquitin-protein ligase San1 often involves Ssa1/Ssa2, but San1 substrate recognition and ubiquitination can proceed without these Hsp70 chaperone functions in vivo and in vitro. Our studies provide new insights into the variability of Hsp70 chaperone involvement with a nuclear PQC degradation pathway.


Subject(s)
Adenosine Triphosphatases/genetics , HSP70 Heat-Shock Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Adenosine Triphosphatases/metabolism , Amino Acid Sequence , Cell Nucleus/metabolism , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , HSP70 Heat-Shock Proteins/genetics , Molecular Chaperones/metabolism , Mutation , Nuclear Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Domains , Protein Folding , Proteolysis , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
3.
Elife ; 82019 12 23.
Article in English | MEDLINE | ID: mdl-31868589

ABSTRACT

The cullin-RING ligases (CRLs) form the major family of E3 ubiquitin ligases. The prototypic CRLs in yeast, called SCF enzymes, employ a single E2 enzyme, Cdc34, to build poly-ubiquitin chains required for degradation. In contrast, six different human E2 and E3 enzyme activities, including Cdc34 orthologs UBE2R1 and UBE2R2, appear to mediate SCF-catalyzed substrate polyubiquitylation in vitro. The combinatorial interplay of these enzymes raises questions about genetic buffering of SCFs in human cells and challenges the dogma that E3s alone determine substrate specificity. To enable the quantitative comparisons of SCF-dependent ubiquitylation reactions with physiological enzyme concentrations, mass spectrometry was employed to estimate E2 and E3 levels in cells. In combination with UBE2R1/2, the E2 UBE2D3 and the E3 ARIH1 both promoted SCF-mediated polyubiquitylation in a substrate-specific fashion. Unexpectedly, UBE2R2 alone had negligible ubiquitylation activity at physiological concentrations and the ablation of UBE2R1/2 had no effect on the stability of SCF substrates in cells. A genome-wide CRISPR screen revealed that an additional E2 enzyme, UBE2G1, buffers against the loss of UBE2R1/2. UBE2G1 had robust in vitro chain extension activity with SCF, and UBE2G1 knockdown in cells lacking UBE2R1/2 resulted in stabilization of the SCF substrates p27 and CYCLIN E as well as the CUL2-RING ligase substrate HIF1α. The results demonstrate the human SCF enzyme system is diversified by association with multiple catalytic enzyme partners.


Subject(s)
Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Protein Ligases/genetics , Genome, Human/genetics , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mass Spectrometry , Polyubiquitin/genetics , Signal Transduction/genetics , Ubiquitination/genetics
4.
J Biol Chem ; 291(36): 18778-90, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27405755

ABSTRACT

Protein quality control (PQC) is a critical process wherein misfolded or damaged proteins are cleared from the cell to maintain protein homeostasis. In eukaryotic cells, the removal of misfolded proteins is primarily accomplished by the ubiquitin-proteasome system. In the ubiquitin-proteasome system, ubiquitin-conjugating enzymes and ubiquitin ligases append polyubiquitin chains onto misfolded protein substrates signaling for their degradation. The kinetics of protein ubiquitylation are paramount as a balance must be achieved between the rapid removal of misfolded proteins versus providing sufficient time for protein chaperones to attempt refolding. To uncover the molecular basis for how PQC substrate ubiquitylation rates are controlled, the reaction catalyzed by nuclear ubiquitin ligase San1 was reconstituted in vitro Our results demonstrate that San1 can function with two ubiquitin-conjugating enzymes, Cdc34 and Ubc1. Although Cdc34 and Ubc1 are both sufficient for promoting San1 activity, San1 functions preferentially with Ubc1, including when both Ubc1 and Cdc34 are present. Notably, a homogeneous peptide that mimics a misfolded PQC substrate was developed and enabled quantification of the kinetics of San1-catalyzed ubiquitylation reactions. We discuss how these results may have broad implications for the regulation of PQC-mediated protein degradation.


Subject(s)
Proteasome Endopeptidase Complex/metabolism , Proteolysis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/physiology , Humans , Proteasome Endopeptidase Complex/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...