Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Vet Entomol ; 37(4): 745-753, 2023 12.
Article in English | MEDLINE | ID: mdl-37427707

ABSTRACT

The cattle tick Rhipicephalus microplus (Acari: Ixodidae) has demonstrated its ability to increase its distribution raising spatially its importance as a vector for zoonotic hemotropic pathogens. In this study, a global ecological niche model of R. microplus was built in different scenarios using Representative Concentration Pathway (RCP), Socio-Economic Pathway (SSP), and a climatic dataset to determine where the species could establish itself and thus affect the variability in the presentation of the hemotropic diseases they transmit. America, Africa and Oceania showed a higher probability for the presence of R. microplus in contrast to some countries in Europe and Asia in the ecological niche for the current period (1970-2000), but with the climate change, there was an increase in the ratio between the geographic range preserved between the RCP and SSP scenarios obtaining the greatest gain in the interplay of RCP4.5-SSP245. Our results allow to determine future changes in the distribution of the cattle tick according to the increase in environmental temperature and socio-economic development influenced by human development activities and trends; this work explores the possibility of designing integral maps between the vector and specific diseases.


Subject(s)
Cattle Diseases , Ixodidae , Rhipicephalus , Tick Infestations , Humans , Cattle , Animals , Climate Change , Tick Infestations/veterinary
2.
Med Vet Entomol ; 33(1): 31-43, 2019 03.
Article in English | MEDLINE | ID: mdl-30039583

ABSTRACT

Nine sandfly species (Diptera: Psychodidae) are suspected or proven vectors of Leishmania spp. in the North and Central America region. The ecological niches for these nine species were modelled in three time periods and the overlaps for all time periods of the geographic predictions (G space), and of ecological dimensions using pairwise comparisons of equivalent niches (E space), were calculated. Two Nearctic, six Neotropical and one species in both bioregions occupied a reduced number of distribution areas. The ecological niche projections for most sandfly species other than Lutzomyia shannoni and Lutzomyia ovallesi have not expanded significantly since the Pleistocene. Only three species increase significantly to 2050, whereas all others remain stable. Lutzomyia longipalpis shared a similar ecological niche with more species than any other, although both L. longipalpis and Lutzomyia olmeca olmeca had conserved distributions over time. Climate change, at both regional and local levels, will play a significant role in the temporal and spatial distributions of sandfly species.


Subject(s)
Animal Distribution , Climate Change , Ecosystem , Insect Vectors/physiology , Psychodidae/physiology , Animals , Central America , Leishmania/physiology , North America
SELECTION OF CITATIONS
SEARCH DETAIL
...