Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Lung Cell Mol Physiol ; 279(1): L143-51, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10893213

ABSTRACT

Angiotensin-converting enzyme is involved in apoptosis of alveolar epithelial cells (Wang R, Zagariya A, Ang E, Ibarra-Sunga O, and Uhal BD. Am J Physiol Lung Cell Mol Physiol 277: L1245-L1250, 1999). This study tested the ability of the angiotensin-converting enzyme inhibitor captopril or the caspase inhibitor Z-Val-Ala-Asp-fluoromethylketone (ZVAD-fmk) to block alveolar epithelial cell apoptosis and lung fibrosis in vivo in response to bleomycin (Bleo). Male Wistar rats received 8 U/kg of Bleo (bleomycin sulfate) or vehicle intratracheally. Subgroups of Bleo-treated rats received captopril, ZVAD-fmk, or vehicle alone. Lung collagen was assessed by picrosirius red or hydroxyproline assay at 1, 7, and 14 days post-Bleo, and apoptosis was detected by in situ end labeling (ISEL). Bleo increased alveolar septal and peribronchial collagen by 100 and 133%, respectively (both P < 0.01), by day 14 but not earlier. In contrast, ISEL was increased in alveolar and airway cells at all time points. Captopril or ZVAD-fmk inhibited collagen accumulation by 91 and 85%, respectively (P < 0. 01). Both agents also inhibited ISEL in alveoli by 99 and 81% and in airways by 67 and 63%, respectively. These data suggest that the efficacy of captopril to inhibit experimental lung fibrogenesis is related to inhibition of apoptosis. They also demonstrate the antifibrotic potential of a caspase inhibitor.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Apoptosis/drug effects , Captopril/pharmacology , Caspase Inhibitors , Enzyme Inhibitors/pharmacology , Lung/physiology , Pulmonary Fibrosis/prevention & control , Amino Acid Chloromethyl Ketones/pharmacology , Animals , Bleomycin/pharmacology , Collagen/metabolism , Epithelium/drug effects , Epithelium/metabolism , Epithelium/physiology , Lung/drug effects , Lung/metabolism , Male , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Rats , Rats, Wistar
2.
Am J Physiol Lung Cell Mol Physiol ; 278(5): L1039-44, 2000 May.
Article in English | MEDLINE | ID: mdl-10781436

ABSTRACT

The antiarrhythmic amiodarone (AM) and its metabolite desethylamiodarone (Des) are known to cause AM-induced pulmonary toxicity, but the mechanisms underlying this disorder remain unclear. We hypothesized that AM might cause AM-induced pulmonary toxicity in part through the induction of apoptosis or necrosis in alveolar epithelial cells (AECs). Two models of type II pneumocytes, the human AEC-derived A549 cell line and primary AECs isolated from adult Wistar rats, were incubated with AM or Des for 20 h. Apoptotic cells were determined by morphological assessment of nuclear fragmentation with propidium iodide on ethanol-fixed cells. Necrotic cells were quantitated by loss of dye exclusion. Both AM and Des caused dose-dependent necrosis starting at 2.5 and 0.1 microg/ml, respectively, in primary rat AECs and at 10 and 5 microg/ml in subconfluent A549 cells (P < 0.05 and P < 0.01, respectively). AM and Des also induced dose-dependent apoptosis beginning at 2.5 microg/ml in the primary AECs (P < 0.05 for both compounds) and at 10 and 5 microg/ml, respectively, in the A549 cell line (P < 0.01). The two compounds also caused significant net cell loss (up to 80% over 20 h of incubation) by either cell type at drug concentrations near or below the therapeutic serum concentration for AM. The cell loss was not due to detachment but was blocked by the broad-spectrum caspase inhibitor Z-Val-Ala-Asp-fluoromethylketone. Furthermore, the angiotensin-converting enzyme inhibitor captopril (500 ng/ml) and the angiotensin-receptor antagonist saralasin (50 microg/ml) significantly inhibited both the induction of apoptosis and net cell loss in response to AM. These results are consistent with recent work from this laboratory demonstrating potent inhibition of apoptosis in human AECs by captopril (Uhal BD, Gidea C, Bargout R, Bifero A, Ibarra-Sunga O, Papp M, Flynn K, and Filippatos G. Am J Physiol Lung Cell Mol Physiol 275: L1013-L1017, 1998). They also suggested that the accumulation of AM and/or its primary metabolite Des in lung tissue may induce cytotoxicity of AECs that might be inhibitable by angiotensin-converting enzyme inhibitors or other antagonists of the renin-angiotensin system.


Subject(s)
Amiodarone/analogs & derivatives , Apoptosis/drug effects , Enzyme Inhibitors/pharmacology , Epithelial Cells/cytology , Pulmonary Alveoli/cytology , Adenocarcinoma , Amino Acid Chloromethyl Ketones/pharmacology , Amiodarone/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Captopril/pharmacology , Cysteine Proteinase Inhibitors/pharmacology , Cytotoxins/pharmacology , Dose-Response Relationship, Drug , Epithelial Cells/drug effects , Humans , In Vitro Techniques , Lung Neoplasms , Male , Rats , Rats, Wistar , Renin-Angiotensin System/physiology , Tumor Cells, Cultured
3.
Am J Physiol ; 277(6): L1245-50, 1999 12.
Article in English | MEDLINE | ID: mdl-10600897

ABSTRACT

Recent works from this laboratory demonstrated potent inhibition of Fas-induced apoptosis in alveolar epithelial cells (AECs) by the angiotensin-converting enzyme (ACE) inhibitor captopril [B. D. Uhal, C. Gidea, R. Bargout, A. Bifero, O. Ibarra-Sunga, M. Papp, K. Flynn, and G. Filippatos. Am. J. Physiol. 275 (Lung Cell. Mol. Physiol. 19): L1013-L1017, 1998] and induction of dose-dependent apoptosis in AECs by purified angiotensin (ANG) II [R. Wang, A. Zagariya, O. Ibarra-Sunga, C. Gidea, E. Ang, S. Deshmukh, G. Chaudhary, J. Baraboutis, G. Filippatos and B. D. Uhal. Am. J. Physiol. 276 (Lung Cell. Mol. Physiol. 20): L885-L889, 1999]. These findings led us to hypothesize that the synthesis and binding of ANG II to its receptor might be involved in the induction of AEC apoptosis by Fas. Apoptosis was induced in the AEC-derived human lung carcinoma cell line A549 or in primary AECs isolated from adult rats with receptor-activating anti-Fas antibodies or purified recombinant Fas ligand, respectively. Apoptosis in response to either Fas activator was inhibited in a dose-dependent manner by the nonthiol ACE inhibitor lisinopril or the nonselective ANG II receptor antagonist saralasin, with maximal inhibitions of 82 and 93% at doses of 0.5 and 5 microg/ml, respectively. In both cell types, activation of Fas caused a significant increase in the abundance of mRNA for angiotensinogen (ANGEN) that was unaffected by saralasin. Transfection with antisense oligonucleotides against ANGEN mRNA inhibited the subsequent induction of Fas-stimulated apoptosis by 70% in A549 cells and 87% in primary AECs (both P < 0.01). Activation of Fas increased the concentration of ANG II in the serum-free extracellular medium 3-fold in primary AECs and 10-fold in A549 cells. Apoptosis in response to either Fas activator was completely abrogated by neutralizing antibodies specific for ANG II (P < 0.01), but isotype-matched nonimmune immunoglobulins had no significant effect. These data indicate that the induction of AEC apoptosis by Fas requires a functional renin-angiotensin system in the target cell. They also suggest that therapeutic control of AEC apoptosis is feasible through pharmacological manipulation of the local renin-angiotensin system.


Subject(s)
Angiotensin II/genetics , Apoptosis/physiology , Membrane Glycoproteins/pharmacology , Pulmonary Alveoli/pathology , Receptors, Angiotensin/physiology , fas Receptor/pharmacology , Adenocarcinoma , Amino Acid Chloromethyl Ketones/pharmacology , Angiotensin II/analysis , Angiotensin II/immunology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensinogen/analysis , Angiotensinogen/genetics , Angiotensinogen/immunology , Animals , Antibodies/pharmacology , Antisense Elements (Genetics) , Apoptosis/drug effects , Cysteine Proteinase Inhibitors/pharmacology , Enzyme-Linked Immunosorbent Assay , Fas Ligand Protein , Fibrosis , Gene Expression/drug effects , Humans , Lisinopril/pharmacology , Lung Neoplasms , Male , Membrane Glycoproteins/immunology , Neutralization Tests , Peptidyl-Dipeptidase A/metabolism , Pulmonary Alveoli/chemistry , Pulmonary Alveoli/enzymology , RNA, Messenger/analysis , Rats , Rats, Wistar , Renin-Angiotensin System/physiology , Signal Transduction/drug effects , Signal Transduction/physiology , Transfection , Tumor Cells, Cultured , fas Receptor/immunology
4.
Am J Physiol ; 276(5): L885-9, 1999 05.
Article in English | MEDLINE | ID: mdl-10330045

ABSTRACT

Recent work from this laboratory demonstrated potent inhibition of apoptosis in human alveolar epithelial cells (AECs) by the angiotensin-converting enzyme inhibitor captopril [B. D. Uhal, C. Gidea, R. Bargout, A. Bifero, O. Ibarra-Sunga, M. Papp, K. Flynn, and G. Filippatos. Am. J. Physiol. 275 (Lung Cell. Mol. Physiol. 19): L1013-L1017, 1998]. On this basis, we hypothesized that apoptosis in this cell type might be induced by angiotensin II (ANG II) through its interaction with the ANG II receptor. Purified ANG II induced dose-dependent apoptosis in both the human AEC-derived A549 cell line and in primary type II pneumocytes isolated from adult Wistar rats as detected by nuclear and chromatin morphology, caspase-3 activity, and increased binding of annexin V. Apoptosis also was induced in primary rat AECs by purified angiotensinogen. The nonselective ANG II-receptor antagonist saralasin completely abrogated both ANG II- and angiotensinogen-induced apoptosis at a concentration of 50 microgram/ml. With RT-PCR, both cell types expressed the ANG II-receptor subtypes 1 and 2 and angiotensin-converting enzyme (ACE). The nonthiol ACE inhibitor lisinopril blocked apoptosis induced by angiotensinogen, but not apoptosis induced by purified ANG II. These data demonstrate the presence of a functional ANG II-dependent pathway for apoptosis in human and rat AECs and suggest a role for the ANG II receptor and ACE in the induction of AEC apoptosis in vivo.


Subject(s)
Angiotensin II/pharmacology , Apoptosis/drug effects , Epithelial Cells/drug effects , Pulmonary Alveoli/cytology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensinogen/pharmacology , Animals , Cells, Cultured , Humans , Lisinopril/pharmacology , Male , Pulmonary Alveoli/drug effects , RNA, Messenger/analysis , Rats , Rats, Wistar , Receptors, Angiotensin/genetics , Reverse Transcriptase Polymerase Chain Reaction , Saralasin/pharmacology , Tumor Cells, Cultured
5.
Am J Physiol ; 275(5): L1013-7, 1998 11.
Article in English | MEDLINE | ID: mdl-9815121

ABSTRACT

The angiotensin-converting enzyme inhibitor captopril has been shown to inhibit fibrogenesis in the lung, but the mechanisms underlying this action are unclear. Apoptosis of lung epithelial cells is believed to be involved in the pathogenesis of pulmonary fibrosis. For these reasons, we studied the effect of captopril on Fas-induced apoptosis in a human lung epithelial cell line. Monoclonal antibodies that activate the Fas receptor induced epithelial cell apoptosis as detected by chromatin condensation, nuclear fragmentation, DNA fragmentation, and increased activities of caspase-1 and -3. Apoptosis was not induced by isotype-matched nonimmune mouse immunoglobulins or nonactivating anti-Fas monoclonal antibodies. When applied simultaneously with anti-Fas antibodies, 50 ng/ml of captopril completely abrogated apoptotic indexes based on morphology, DNA fragmentation, and inducible caspase-1 activity and significantly decreased the inducible activity of caspase-3. Inhibition of apoptosis by captopril was concentration dependent, with an IC50 of 70 pg/ml. These data suggest that the inhibitory actions of captopril on pulmonary fibrosis may be related to prevention of lung epithelial cell apoptosis.


Subject(s)
Apoptosis/drug effects , Captopril/pharmacology , Epithelial Cells/drug effects , Lung/physiology , fas Receptor/physiology , Adenocarcinoma , Animals , Antibodies, Monoclonal/pharmacology , Caspase 1/metabolism , Caspase 3 , Caspases/metabolism , DNA Fragmentation/drug effects , Epithelial Cells/cytology , Epithelial Cells/physiology , Humans , Lung/cytology , Lung Neoplasms , Mice , Models, Biological , Pulmonary Fibrosis/physiopathology , Pulmonary Fibrosis/prevention & control , Tumor Cells, Cultured , fas Receptor/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...