Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(18)2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32937798

ABSTRACT

This paper presents a system of sensors used in flash flood prediction that offers critical real-time information used to provide early warnings that can provide the minutes needed for persons to evacuate before imminent events. Flooding is one of the most serious natural disasters humans confront in terms of loss of life and results in long-term effects, which often have severely adverse social consequences. However, flash floods are potentially more dangerous to life because there is often little or no forewarning of the impending disaster. The Emergency Water Information Network (EWIN) offers a solution that integrates an early warning system, notifications, and real-time monitoring of flash flood risks. The platform has been implemented in Colima, Mexico covering the Colima and Villa de Alvarez metropolitan area. This platform consists of eight fixed riverside hydrological monitoring stations, eight meteorological stations, nomadic mobile monitoring stations called "drifters" used in the flow, and a sniffer with data muling capability. The results show that this platform effectively compiles and forwards information to decision-makers, government officials, and the general public, potentially providing valuable minutes for people to evacuate dangerous areas.

2.
Sensors (Basel) ; 19(1)2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30609726

ABSTRACT

Flooding is one of the most frequent and costly natural disasters affecting mankind. However, implementing Internet of Things (IoT) technology to monitor river behavior may help mitigate or prevent future disasters. This article outlines the hardware development of an IoT system (RiverCore) and defines an application scenario in a specific hydrological region of the state of Colima (Mexico), highlighting the characteristics of data acquisition and data processing used. Both fixed position and moving drifter node systems are described along with web-based data acquisition platform developments integrated with IoT techniques to retrieve data through 3G cellular networks. The developed architecture uses the Message Queuing Telemetry Transport (MQTT) protocol, along with encryption and security mechanisms, to send real-time data packages from fixed nodes to a server that stores retrieved data in a non-relational database. From this, data can be accessed and displayed through different customizable queries and graphical representations, allowing future use in flood analysis and prediction systems. All of these features are presented along with graphical evidence of the deployment of the different devices and of several cellular communication and on-site data acquisition tests.


Subject(s)
Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Floods/prevention & control , Hydrology/statistics & numerical data , Internet/instrumentation , Rivers , Telemetry/instrumentation , Cloud Computing , Floods/statistics & numerical data , Information Storage and Retrieval , Mexico , Mobile Applications
SELECTION OF CITATIONS
SEARCH DETAIL
...