Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(9): e0268053, 2022.
Article in English | MEDLINE | ID: mdl-36048874

ABSTRACT

Body-size scaling of metabolic rate in animals is typically allometric, with mass exponents that vary to reflect differences in the physiological status of organisms of both endogenous and environmental origin. Regarding the intraspecific analysis of this relationship in bivalve molluscs, one important source of metabolic variation comes from the large inter-individual differences in growth performance characteristic of this group. In the present study, we aimed to address the association of growth rate differences recorded among individual mussels (Mytilus galloprovincialis) with variable levels of the standard metabolic rate (SMR) resulting in growth-dependent shift in size scaling relationships. SMR was measured in mussels of different sizes and allometric functions fitting SMR vs. body-mass relationships were compared both inter- and intra-individually. The results revealed a metabolic component (the overhead of growth) attributable to the differential costs of maintenance of feeding and digestion structures between fast and slow growers; these costs were estimated to amount to a 3% increase in SMR per unit of increment in the weight specific growth rate. Scaling exponents computed for intraindividual SMR vs body-mass relationships had a common value b = 0.79 (~ ¾); however, when metabolic effects caused by differential growth were discounted, this value declined to 0.67 (= ⅔), characteristic of surface dependent processes. This last value of the scaling exponent was also recorded for the interindividual relationships of both standard and routine metabolic rates (SMR and RMR) after long-lasting maintenance of mussels under optimal uniform conditions in the laboratory. The above results were interpreted based on the metabolic level boundaries (MLB) hypothesis.


Subject(s)
Basal Metabolism , Mytilus , Animals , Basal Metabolism/physiology , Body Size , Energy Metabolism/physiology , Mytilus/physiology
2.
Mar Environ Res ; 180: 105725, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35987041

ABSTRACT

Differences in the food acquisition rates and in the energetic costs of metabolism seem to affect the growth rate variability of mussels. The aim of this study was to analyze if the physiological performances responsible for such growth rate variability are accompanied by structural differences at tissue or cellular level in the main organs involved in energy acquisition (gill) and processing (digestive gland). Fast growers had higher cilia density and metabolic efficiency in their gill, and well-developed digestive tissue with barely no connective tissue or atrophy. Slow-growing mussels displayed stress signs that impede the proper acquisition, digestion and absorption of food: low cilia density, low mitochondrial capacity and high antioxidant activity levels in the gills, and high atrophy of the digestive gland. The data herein explains the growth rate variability of mussels, demonstrating that morphological and functional differences exist between fast and slow growers.


Subject(s)
Mytilus , Animals , Antioxidants , Atrophy/metabolism , Gills/metabolism , Mytilus/physiology
3.
Mar Environ Res ; 120: 111-21, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27494189

ABSTRACT

Differential utilization of phytoplankton and detrital particles present in natural sediments of mud-flats was studied in a series of experiments performed on the infaunal bivalve Cerastoderma edule. In order to assess digestive selection, parameters of food processing (organic ingestion rate: OIR, gross absorption efficiency: GAE and gut passage time: GPT) were recorded for each organic component in different combinations of food particles radio-labelled with (14)C. Experimental design included the use of both labelled diets of a sole organic component and cross-labelled diets; i.e., mixed suspensions presenting alternatively labelled one of the various components tested: phytoplankton cells, sedimentary organic particles and particulate detritus from vascular salt-marsh plants. Preferential absorption of phytoplankton was accounted for by absorption efficiency values that were two-fold those for sedimentary detritus when recorded with mixed diets of both organic components. Two factors contributed to this difference: a) higher digestibility of microalgae, measured as the ratio of GAE to GPT, and b) faster gut passage of detrital particles that results from digestive selection likely involving the preferential incorporation of phytoplankton into the digestive gland. However, when diets based on a sole organic component (either phytoplankton or detritus) were compared, larger GPT were recorded for detrital particles that enabled improving GAE of this rather refractory food. Overall results of these experiments are consistent with most studies in trophic ecology based on stable isotopes enrichment, concerning both the diversity of trophic sources used by marine bivalves and its preferential utilization of phytoplankton over phyto-detritus.


Subject(s)
Cardiidae/physiology , Diet , Environmental Monitoring , Geologic Sediments/analysis , Phytoplankton , Animals , Bivalvia , Digestion , Eating , Shellfish
4.
J Comp Physiol B ; 183(7): 893-904, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23695364

ABSTRACT

Thermal dependence of clearance rate (CR: l h(-1)), standard (SMR: J h(-1)) and routine metabolic rates (RMR: J h(-1)), were analyzed in fast (F)- and slow (S)-growing juveniles of the clam Ruditapes philippinarum. Physiological rates were measured at the maintenance temperature (17 °C), and compared with measurements performed at 10 and 24 °C after 16 h and 14 days to analyze acute and acclimated responses, respectively. Metabolic rates (both RMR and SMR) differed significantly between F and S seeds, irrespective of temperature. Mass-specific CRs were not different for F and S seeds but were significantly higher in F clams for rates standardized according to allometric size-scaling rules. Acute thermal dependency of CR was equal for F and S clams: mean Q 10 were ≈3 and 2 in temperature ranges of 10-17 and 17-24 °C, respectively. CR did not change after 2 weeks of acclimation to temperatures. Acute thermal effects on SMR were similar in both groups (Q 10 ≈ 1 and 1.6 in temperature ranges of 10-17 and 17-24 °C, respectively). Large differences between groups were found in the acute thermal dependence of RMR: Q 10 in F clams (≈1.2 and 1.9 at temperature ranges of 10-17 and 17-24 °C, respectively) were similar to those found for SMR (Q 10 = 1.0 and 1.7). In contrast, RMR of S clams exhibited maximum thermal dependence (Q 10 = 3.1) at 10-17 °C and become depressed at higher temperatures (Q 10 = 0.9 at 17-24 °C). A recovery of RMR in S clams was recorded upon acclimation to 24 °C. Contrasting metabolic patterns between fast and slow growers are interpreted as a consequence of differential thermal sensitivity of the fraction of metabolism associated to food processing and assimilation.


Subject(s)
Bivalvia/physiology , Energy Metabolism , Acclimatization , Animals , Hot Temperature , Oxygen Consumption
SELECTION OF CITATIONS
SEARCH DETAIL
...