Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Dis ; 227(2): 236-245, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36082433

ABSTRACT

BACKGROUND: There are limited data on how coronavirus disease 2019 (COVID-19) severity, timing of infection, and subsequent vaccination impact transplacental transfer and persistence of maternal and infant antibodies. METHODS: In a longitudinal cohort of pregnant women with polymerase chain reaction-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, maternal/infant sera were collected at enrollment, delivery/birth, and 6 months. Anti-SARS-CoV-2 spike immunoglobulin (Ig)G, IgM, and IgA were measured by enzyme-linked immunosorbent assay. RESULTS: Two-hundred fifty-six pregnant women and 135 infants were enrolled; 148 maternal and 122 neonatal specimens were collected at delivery/birth; 45 maternal and 48 infant specimens were collected at 6 months. Sixty-eight percent of women produced all anti-SARS-CoV-2 isotypes at delivery (IgG, IgM, IgA); 96% had at least 1 isotype. Symptomatic disease and vaccination before delivery were associated with higher maternal IgG at labor and delivery. Detectable IgG in infants dropped from 78% at birth to 52% at 6 months. In the multivariate analysis evaluating factors associated with detectable IgG in infants at delivery, significant predictors were 3rd trimester infection (odds ratio [OR] = 4.0), mild/moderate disease (OR = 4.8), severe/critical disease (OR = 6.3), and maternal vaccination before delivery (OR = 18.8). No factors were significant in the multivariate analysis at 6 months postpartum. CONCLUSIONS: Vaccination in pregnancy post-COVID-19 recovery is a strategy for boosting antibodies in mother-infant dyads.


Subject(s)
COVID-19 , Mothers , Pregnancy , Infant, Newborn , Female , Infant , Humans , SARS-CoV-2 , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M , Antibodies, Viral
2.
Res Sq ; 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38234820

ABSTRACT

We developed a 4-parameter clinical assay using Electric Field Induced Release and Measurement (EFIRM) technology to simultaneously assess SARS-CoV-2 RNA (vRNA), nucleocapsid antigen, host binding (BAb) and neutralizing antibody (NAb) levels from a drop of saliva with performance that equals or surpasses current EUA-approved tests. The vRNA and antigen assays achieved lower limit of detection (LOD) of 100 copies/reaction and 3.5 TCID50/mL, respectively. The vRNA assay differentiated between acutely infected (n=10) and infection-naïve patients (n=33) with an AUC of 0.9818, sensitivity of 90%, and specificity of 100%. The antigen assay similarly differentiated these patient populations with an AUC of 1.000. The BAb assay detected BAbs with an LOD of 39 pg/mL and distinguished acutely infected (n=35), vaccinated with prior infection (n=13), and vaccinated infection-naïve patients (n=13) from control (n=81) with AUC of 0.9481, 1.000, and 0.9962, respectively. The NAb assay detected NAbs with an LOD of 31.6 Unit/mL and differentiated between COVID-19 recovered or vaccinated patients (n=31) and pre-pandemic controls (n=60) with an AUC 0.923, sensitivity of 87.10%, and specificity of 86.67%. Our multiparameter assay represents a significant technological advancement to simultaneously address SARS-CoV-2 infection and immunity, and it lays the foundation for tackling potential future pandemics.

3.
Cell Rep Med ; 2(11): 100453, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34723226

ABSTRACT

While pregnancy increases the risk for severe COVID-19, the clinical and immunological implications of COVID-19 on maternal-fetal health remain unknown. Here, we present the clinical and immunological landscapes of 93 COVID-19 mothers and 45 of their SARS-CoV-2-exposed infants through comprehensive serum proteomics profiling for >1,400 cytokines of their peripheral and cord blood specimens. Prenatal SARS-CoV-2 infection triggers NF-κB-dependent proinflammatory immune activation. Pregnant women with severe COVID-19 show increased inflammation and unique IFN-λ antiviral signaling, with elevated levels of IFNL1 and IFNLR1. Furthermore, SARS-CoV-2 infection re-shapes maternal immunity at delivery, altering the expression of pregnancy complication-associated cytokines, inducing MMP7, MDK, and ESM1 and reducing BGN and CD209. Finally, COVID-19-exposed infants exhibit induction of T cell-associated cytokines (IL33, NFATC3, and CCL21), while some undergo IL-1ß/IL-18/CASP1 axis-driven neonatal respiratory distress despite birth at term. Our findings demonstrate COVID-19-induced immune rewiring in both mothers and neonates, warranting long-term clinical follow-up to mitigate potential health risks.


Subject(s)
COVID-19/immunology , Cytokines/blood , Inflammation , Proteomics , Adolescent , Adult , COVID-19/blood , COVID-19/metabolism , Female , Humans , Infant, Newborn , Mothers , Pregnancy , Serum/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...