Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Sci ; 168: 106082, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34822973

ABSTRACT

Skin hyperpigmentation is caused by an excessive production of melanin. Cysteamine, an aminothiol compound physiologically synthetized in human body cells, is known as depigmenting agent. The aim of this study was to evaluate the depigmenting activity and skin penetration of liposome formulations encapsulating cysteamine hydrochloride. First, cysteamine hydrochloride-loaded liposomes were prepared and characterized for their size, polydispersity index, zeta potential and the encapsulation efficiency of the active molecule. The stability of cysteamine hydrochloride in the prepared liposome formulations in suspension and freeze-dried forms was then assessed. The in vitro cytotoxicity of cysteamine and cysteamine-loaded liposome suspensions (either original or freeze-dried) was evaluated in B16 murine melanoma cells. The measurement of melanin and tyrosinase activities was assessed after cells treatment with free and encapsulated cysteamine. The antioxidant activity of the free and encapsulated cysteamine was evaluated by the measurement of ROS formation in treated cells. The ex vivo human skin penetration study was also performed using Franz diffusion cell. The stability of cysteamine hydrochloride was improved after encapsulation in liposomal suspension. In addition, for the liposome re-suspended after freeze-drying, a significant increase of vesicle stability was observed. The free and the encapsulated cysteamine in suspension (either original or freeze-dried) did not show any cytotoxic effect, inhibited the melanin synthesis as well as the tyrosinase activity. An antioxidant activity was observed for the free and the encapsulated cysteamine hydrochloride. The encapsulation enhanced the skin penetration of cysteamine hydrochloride. The penetration of this molecule was better for the re-suspended freeze-dried form than the original liposomal suspension where the drug was found retained in the epidermis layer of the skin.


Subject(s)
Cysteamine , Liposomes , Animals , Freeze Drying , Humans , Mice , Skin , Skin Absorption
SELECTION OF CITATIONS
SEARCH DETAIL
...