Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters










Publication year range
1.
J Neural Eng ; 21(4)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38941988

ABSTRACT

Objective: Neurons in primary visual cortex (V1) display a range of sensitivity in their response to translations of their preferred visual features within their receptive field: from high specificity to a precise position through to complete invariance. This visual feature selectivity and invariance is frequently modeled by applying a selection of linear spatial filters to the input image, that define the feature selectivity, followed by a nonlinear function that combines the filter outputs, that defines the invariance, to predict the neural response. We compare two such classes of model, that are both popular and parsimonious, the generalized quadratic model (GQM) and the nonlinear input model (NIM). These two classes of model differ primarily in that the NIM can accommodate a greater diversity in the form of nonlinearity that is applied to the outputs of the filters.Approach: We compare the two model types by applying them to data from multielectrode recordings from cat primary visual cortex in response to spatially white Gaussian noise After fitting both classes of model to a database of 342 single units (SUs), we analyze the qualitative and quantitative differences in the visual feature processing performed by the two models and their ability to predict neural response.Main results: We find that the NIM predicts response rates on a held-out data at least as well as the GQM for 95% of SUs. Superior performance occurs predominantly for those units with above average spike rates and is largely due to the NIMs ability to capture aspects of the model's nonlinear function cannot be captured with the GQM rather than differences in the visual features being processed by the two different models.Significance: These results can help guide model choice for data-driven receptive field modelling.


Subject(s)
Models, Neurological , Nonlinear Dynamics , Visual Fields , Cats , Animals , Visual Fields/physiology , Primary Visual Cortex/physiology , Photic Stimulation/methods , Visual Cortex/physiology , Neurons/physiology
2.
Front Cell Neurosci ; 18: 1360870, 2024.
Article in English | MEDLINE | ID: mdl-38572073

ABSTRACT

Degeneration of photoreceptors in the retina is a leading cause of blindness, but commonly leaves the retinal ganglion cells (RGCs) and/or bipolar cells extant. Consequently, these cells are an attractive target for the invasive electrical implants colloquially known as "bionic eyes." However, after more than two decades of concerted effort, interfaces based on conventional electrical stimulation approaches have delivered limited efficacy, primarily due to the current spread in retinal tissue, which precludes high-acuity vision. The ideal prosthetic solution would be less invasive, provide single-cell resolution and an ability to differentiate between different cell types. Nanoparticle-mediated approaches can address some of these requirements, with particular attention being directed at light-sensitive nanoparticles that can be accessed via the intrinsic optics of the eye. Here we survey the available known nanoparticle-based optical transduction mechanisms that can be exploited for neuromodulation. We review the rapid progress in the field, together with outstanding challenges that must be addressed to translate these techniques to clinical practice. In particular, successful translation will likely require efficient delivery of nanoparticles to stable and precisely defined locations in the retinal tissues. Therefore, we also emphasize the current literature relating to the pharmacokinetics of nanoparticles in the eye. While considerable challenges remain to be overcome, progress to date shows great potential for nanoparticle-based interfaces to revolutionize the field of visual prostheses.

3.
ACS Appl Mater Interfaces ; 16(4): 4361-4374, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38232177

ABSTRACT

This study demonstrates the control of neuronal survival and development using nitrogen-doped ultrananocrystalline diamond (N-UNCD). We highlight the role of N-UNCD in regulating neuronal activity via near-infrared illumination, demonstrating the generation of stable photocurrents that enhance neuronal survival and neurite outgrowth and foster a more active, synchronized neuronal network. Whole transcriptome RNA sequencing reveals that diamond substrates improve cellular-substrate interaction by upregulating extracellular matrix and gap junction-related genes. Our findings underscore the potential of conductive diamond as a robust and biocompatible platform for noninvasive and effective neural tissue engineering.


Subject(s)
Diamond , Tissue Engineering , Diamond/pharmacology , Diamond/chemistry , Electric Conductivity , Neurons/physiology , Cell Survival
4.
Rev Neurosci ; 35(3): 243-258, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-37725397

ABSTRACT

Computational modeling helps neuroscientists to integrate and explain experimental data obtained through neurophysiological and anatomical studies, thus providing a mechanism by which we can better understand and predict the principles of neural computation. Computational modeling of the neuronal pathways of the visual cortex has been successful in developing theories of biological motion processing. This review describes a range of computational models that have been inspired by neurophysiological experiments. Theories of local motion integration and pattern motion processing are presented, together with suggested neurophysiological experiments designed to test those hypotheses.


Subject(s)
Motion Perception , Visual Cortex , Humans , Motion Perception/physiology , Visual Perception , Computer Simulation , Visual Cortex/physiology , Neurons/physiology , Models, Neurological , Visual Pathways/physiology
5.
Article in English | MEDLINE | ID: mdl-38083106

ABSTRACT

Optogenetics gives us unprecedented power to investigate brain connectivity. The ability to activate neural circuits with single cell resolution and its ease of application has provided a wealth of knowledge in brain function. More recently, optogenetics has shown tremendous utility in prosthetics applications, including vision restoration for patients with retinitis pigmentosa. One of the disadvantages of optogenetics, however, is its poor temporal bandwidth, i.e. the cell's inability to fire at a rate that matches the optical stimulation rate at high frequencies (>30 Hz). This research proposes a new strategy to overcome the temporal limits of optogenetic stimulation. Using whole-cell current clamp recordings in mouse retinal ganglion cells expressing channelrhodopsin-2 (H134R variant), we observed that randomizing inter-pulse intervals can significantly increase a retinal ganglion cell's temporal response to high frequency stimulation.Clinical Relevance- A significant disadvantage of optogenetic stimulation is its poor temporal dynamics which prohibit its widespread use in retinal prosthetics. We have shown that randomizing the interval between stimulation pulses reduces adaptation in retinal ganglion cells. This stimulation strategy may contribute to new levels of functional restoration in therapeutics which incorporate optogenetics.


Subject(s)
Optogenetics , Retinal Ganglion Cells , Mice , Humans , Animals , Retinal Ganglion Cells/physiology , Vision, Ocular , Photic Stimulation
6.
Front Neurosci ; 17: 1244952, 2023.
Article in English | MEDLINE | ID: mdl-37746137

ABSTRACT

Extracellular recordings were made from 642 units in the primary visual cortex (V1) of a highly visual marsupial, the Tammar wallaby. The receptive field (RF) characteristics of the cells were objectively estimated using the non-linear input model (NIM), and these were correlated with spike shapes. We found that wallaby cortical units had 68% regular spiking (RS), 12% fast spiking (FS), 4% triphasic spiking (TS), 5% compound spiking (CS) and 11% positive spiking (PS). RS waveforms are most often associated with recordings from pyramidal or spiny stellate cell bodies, suggesting that recordings from these cell types dominate in the wallaby cortex. In wallaby, 70-80% of FS and RS cells had orientation selective RFs and had evenly distributed linear and nonlinear RFs. We found that 47% of wallaby PS units were non-orientation selective and they were dominated by linear RFs. Previous studies suggest that the PS units represent recordings from the axon terminals of non-orientation selective cells originating in the lateral geniculate nucleus (LGN). If this is also true in wallaby, as strongly suggested by their low response latencies and bursty spiking properties, the results suggest that significantly more neurons in wallaby LGN are already orientation selective. In wallaby, less than 10% of recorded spikes had triphasic (TS) or sluggish compound spiking (CS) waveforms. These units had a mixture of orientation selective and non-oriented properties, and their cellular origins remain difficult to classify.

7.
Biomater Sci ; 11(15): 5146-5162, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37194340

ABSTRACT

Neural interfaces are well-established as a tool to understand the behaviour of the nervous system via recording and stimulation of living neurons, as well as serving as neural prostheses. Conventional neural interfaces based on metals and carbon-based materials are generally optimised for high conductivity; however, a mechanical mismatch between the interface and the neural environment can significantly reduce long-term neuromodulation efficacy by causing an inflammatory response. This paper presents a soft composite material made of gelatin methacryloyl (GelMA) containing graphene oxide (GO) conjugated with gold nanorods (AuNRs). The soft hydrogel presents stiffness within the neural environment range of modulus below 5 kPa, while the AuNRs, when exposed to light in the near infrared range, provide a photothermal response that can be used to improve the spatial and temporal precision of neuromodulation. These favourable properties can be maintained at safer optical power levels when combined with electrical stimulation. In this paper we provide mechanical and biological characterization of the optical activity of the GO-AuNR composite hydrogel. The optical functionality of the material has been evaluated via photothermal stimulation of explanted rat retinal tissue. The outcomes achieved with this study encourage further investigation into optical and electrical costimulation parameters for a range of biomedical applications.


Subject(s)
Nanotubes , Rats , Animals , Tissue Engineering , Neurons/physiology , Hydrogels , Gold
8.
ACS Nano ; 17(3): 2079-2088, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36724043

ABSTRACT

The vision of patients rendered blind by photoreceptor degeneration can be partially restored by exogenous stimulation of surviving retinal ganglion cells (RGCs). Whereas conventional electrical stimulation techniques have failed to produce naturalistic visual percepts, nanoparticle-based optical sensors have recently received increasing attention as a means to artificially stimulate the RGCs. In particular, nanoparticle-enhanced infrared neural modulation (NINM) is a plasmonically mediated photothermal neuromodulation technique that has a demonstrated capacity for both stimulation and inhibition, which is essential for the differential modulation of ON-type and OFF-type RGCs. Gold nanorods provide tunable absorption through the near-infrared wavelength window, which reduces interference with any residual vision. Therefore, NINM may be uniquely well-suited to retinal prosthesis applications but, to our knowledge, has not previously been demonstrated in RGCs. In the present study, NINM laser pulses of 100 µs, 500 µs and 200 ms were applied to RGCs in explanted rat retinae, with single-cell responses recorded via patch-clamping. The shorter laser pulses evoked robust RGC stimulation by capacitive current generation, while the long laser pulses are capable of inhibiting spontaneous action potentials by thermal block. Importantly, an implicit bias toward OFF-type inhibition is observed, which may have important implications for the feasibility of future high-acuity retinal prosthesis design based on nanoparticle sensors.


Subject(s)
Retinal Ganglion Cells , Visual Prosthesis , Rats , Animals , Light , Action Potentials/physiology , Electric Stimulation
9.
Sci Adv ; 8(39): eabn0954, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36179020

ABSTRACT

Primary visual cortices in many mammalian species exhibit modular and periodic orientation preference maps arranged in pinwheel-like layouts. The role of inherited traits as opposed to environmental influences in determining this organization remains unclear. Here, we characterize the cortical organization of an Australian marsupial, revealing pinwheel organization resembling that of eutherian carnivores and primates but distinctly different from the simpler salt-and-pepper arrangement of eutherian rodents and rabbits. The divergence of marsupials from eutherians 160 million years ago and the later emergence of rodents and rabbits suggest that the salt-and-pepper structure is not the primitive ancestral form. Rather, the genetic code that enables complex pinwheel formation is likely widespread, perhaps extending back to the common therian ancestors of modern mammals.

10.
J Neural Eng ; 19(4)2022 08 18.
Article in English | MEDLINE | ID: mdl-35917811

ABSTRACT

Objective.Retinal prostheses have had limited success in vision restoration through electrical stimulation of surviving retinal ganglion cells (RGCs) in the degenerated retina. This is partly due to non-preferential stimulation of all RGCs near a single stimulating electrode, which include cells that conflict in their response properties and their contribution to visiual processing. Our study proposes a stimulation strategy to preferentially stimulate individual RGCs based on their temporal electrical receptive fields (tERFs).Approach.We recorded the responses of RGCs using whole-cell patch clamping and demonstrated the stimulation strategy, first using intracellular stimulation, then via extracellular stimulation.Main results. We successfully reconstructed the tERFs according to the RGC response to Gaussian white noise current stimulation. The characteristics of the tERFs were extracted and compared based on the morphological and light response types of the cells. By re-delivering stimulation trains that were composed of the tERFs obtained from different cells, we could preferentially stimulate individual RGCs as the cells showed lower activation thresholds to their own tERFs.Significance.This proposed stimulation strategy implemented in the next generation of recording and stimulating retinal prostheses may improve the quality of artificial vision.


Subject(s)
Retinal Ganglion Cells , Visual Prosthesis , Action Potentials/physiology , Electric Stimulation/methods , Retina , Retinal Ganglion Cells/physiology
11.
J Neurosci ; 42(26): 5198-5211, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35610048

ABSTRACT

We studied the changes that neuronal receptive field (RF) models undergo when the statistics of the stimulus are changed from those of white Gaussian noise (WGN) to those of natural scenes (NSs), by fitting the models to multielectrode data recorded from primary visual cortex (V1) of female cats. This allowed the estimation of both a cascade of linear filters on the stimulus, as well as the static nonlinearities that map the output of the filters to the neuronal spike rates. We found that cells respond differently to these two classes of stimuli, with mostly higher spike rates and shorter response latencies to NSs than to WGN. The most striking finding was that NSs resulted in RFs that had additional uncovered filters compared with WGN. This finding was not an artifact of the higher spike rates observed for NSs relative to WGN, but rather was related to a change in coding. Our results reveal a greater extent of nonlinear processing in V1 neurons when stimulated using NSs compared with WGN. Our findings indicate the existence of nonlinear mechanisms that endow V1 neurons with context-dependent transmission of visual information.SIGNIFICANCE STATEMENT This study addresses a fundamental question about the concept of the receptive field (RF): does the encoding of information depend on the context or statistical regularities of the stimulus type? We applied state-of-the-art RF modeling techniques to data collected from multielectrode recordings from cat visual cortex in response to two statistically distinct stimulus types: white Gaussian noise and natural scenes. We find significant differences between the RFs that emerge from our data-driven modeling. Natural scenes result in far more complex RFs that combine multiple features in the visual input. Our findings reveal that different regimes or modes of operation are at work in visual cortical processing depending on the information present in the visual input. The complexity of V1 neural coding appears to be dependent on the complexity of the stimulus. We believe this new finding will have interesting implications for our understanding of the efficient transmission of information in sensory systems, which is an integral assumption of many computational theories (e.g., efficient and predictive coding of sensory processing in the brain).


Subject(s)
Visual Cortex , Visual Fields , Animals , Female , Photic Stimulation/methods , Primary Visual Cortex , Visual Cortex/physiology , Visual Perception/physiology
12.
Clin Exp Optom ; 105(6): 649-657, 2022 08.
Article in English | MEDLINE | ID: mdl-34369297

ABSTRACT

CLINICAL RELEVANCE: Knowledge of the typical eye health profile of patients experiencing social or economic disadvantage is useful for health care modelling. BACKGROUND: The aim of this work is to profile the ocular health and sociodemographic characteristics of Australian College of Optometry service users of all ages and to explore the relationships between key sociodemographic characteristics and eye health. METHODS: For 3093 eye examinations, best-corrected distance visual acuity and mean spherical equivalent refractive error were tested non-parametrically by clinic category, remoteness area, number of co-morbidities, gender and indigenous status, also correlated against age and socioeconomic advantage/disadvantage. Covariates of interest were entered into linear mixed models of visual acuity and mean spherical equivalent refractive error, controlling for age. Risk estimates are reported for visual impairment (defined as ≤6/12 best-corrected distance visual acuity in one or both eyes) and ocular diagnoses. RESULTS: Visual impairment is more prevalent amongst service users examined in domiciliary settings. Increasing co-morbidities were associated with poorer best-corrected distance visual acuity. Aboriginal and Torres Strait Islander service users had lower visual impairment prevalence overall but proportionally fewer aged ≥50 years attended for eye care, compared to non-indigenous. CONCLUSIONS: Domiciliary eye examinations detect remediable visual impairment. Federal public health interventions delivered by the Australian College of Optometry for Aboriginal and Torres Strait Islander eye care appear effective but may not reach all aged ≥ 50 years; further research is required. Identification of multiple co-morbidities should prompt optometrists to tailor public health messages and signpost to low vision services earlier.


Subject(s)
Health Services, Indigenous , Optometry , Refractive Errors , Vision, Low , Australia/epidemiology , Humans , Native Hawaiian or Other Pacific Islander
13.
Front Neurosci ; 15: 658703, 2021.
Article in English | MEDLINE | ID: mdl-33912007

ABSTRACT

Neural interfacing devices using penetrating microelectrode arrays have emerged as an important tool in both neuroscience research and medical applications. These implantable microelectrode arrays enable communication between man-made devices and the nervous system by detecting and/or evoking neuronal activities. Recent years have seen rapid development of electrodes fabricated using flexible, ultrathin carbon-based microfibers. Compared to electrodes fabricated using rigid materials and larger cross-sections, these microfiber electrodes have been shown to reduce foreign body responses after implantation, with improved signal-to-noise ratio for neural recording and enhanced resolution for neural stimulation. Here, we review recent progress of carbon-based microfiber electrodes in terms of material composition and fabrication technology. The remaining challenges and future directions for development of these arrays will also be discussed. Overall, these microfiber electrodes are expected to improve the longevity and reliability of neural interfacing devices.

14.
Front Neurosci ; 15: 629056, 2021.
Article in English | MEDLINE | ID: mdl-33584193

ABSTRACT

The study of neurons is fundamental for basic neuroscience research and treatment of neurological disorders. In recent years ultrasound has been increasingly recognized as a viable method to stimulate neurons. However, traditional ultrasound transducers are limited in the scope of their application by self-heating effects, limited frequency range and cavitation effects during neuromodulation. In contrast, surface acoustic wave (SAW) devices, which are producing wavemodes with increasing application in biomedical devices, generate less self-heating, are smaller and create less cavitation. SAW devices thus have the potential to address some of the drawbacks of traditional ultrasound transducers and could be implemented as miniaturized wearable or implantable devices. In this mini review, we discuss the potential mechanisms of SAW-based neuromodulation, including mechanical displacement, electromagnetic fields, thermal effects, and acoustic streaming. We also review the application of SAW actuation for neuronal stimulation, including growth and neuromodulation. Finally, we propose future directions for SAW-based neuromodulation.

15.
J Physiol ; 599(8): 2211-2238, 2021 04.
Article in English | MEDLINE | ID: mdl-33501669

ABSTRACT

KEY POINTS: Extracellular spikes recorded in the visual cortex (Area 17/18, V1) are commonly classified into either regular-spiking (RS) or fast-spiking (FS). Using multi-electrode arrays positioned in cat V1 and a broadband stimulus, we show that there is also a distinct class with positive-spiking (PS) waveforms. PS units were associated mainly with non-oriented receptive fields while RS and FS units had orientation-selective receptive fields. We suggest that PS units are recordings of axons originating from the thalamus. This conclusion was reinforced by our finding that we could record PS units after cortical silencing, but not record RS and FS units. The importance of our findings is that we were able to correlate spike shapes with receptive field characteristics with high precision using multi-electrode extracellular recording techniques. This allows considerable increases in the amount of information that can be extracted from future cortical experiments. ABSTRACT: Extracellular spike waveforms from recordings in the visual cortex have been classified into either regular-spiking (RS) or fast-spiking (FS) units. While both these types of spike waveforms are negative-dominant, we show that there are also distinct classes of spike waveforms in visual Area 17/18 (V1) of anaesthetised cats with positive-dominant waveforms, which are not regularly reported. The spatial receptive fields (RFs) of these different spike waveform types were estimated, which objectively revealed the existence of oriented and non-oriented RFs. We found that units with positive-dominant spikes, which have been associated with recordings from axons in the literature, had mostly non-oriented RFs (84%), which are similar to the centre-surround RFs observed in the dorsal lateral geniculate nucleus (dLGN). Thus, we hypothesise that these positive-dominant waveforms may be recordings from dLGN afferents. We recorded from V1 before and after the application of muscimol (a cortical silencer) and found that the positive-dominant spikes (PS) remained while the RS and FS cells did not. We also noted that the PS units had spiking characteristics normally associated with dLGN units (i.e. higher response spike rates, lower response latencies and higher proportion of burst spikes). Our findings show quantitatively that it is possible to correlate the RF properties of cortical neurons with particular spike waveforms. This has implications for how extracellular recordings should be interpreted and complex experiments can now be contemplated that would have been very challenging previously, such as assessing the feedforward connectivity between brain areas in the same location of cortical tissue.


Subject(s)
Visual Cortex , Animals , Axons , Cats , Geniculate Bodies , Neurons , Photic Stimulation , Thalamus , Visual Pathways
16.
Mater Sci Eng C Mater Biol Appl ; 118: 111454, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33255039

ABSTRACT

The performance of many implantable neural stimulation devices is degraded due to the loss of neurons around the electrodes by the body's natural biological responses to a foreign material. Coating of electrodes with biomolecules such as extracellular matrix proteins is one potential route to suppress the adverse responses that lead to loss of implant functionality. Concurrently, however, the electrochemical performance of the stimulating electrode must remain optimal to continue to safely provide sufficient charge for neural stimulation. We have previously found that oxygen plasma treated nitrogen included ultrananocrystalline diamond coated platinum electrodes exhibit superior charge injection capacity and electrochemical stability for neural stimulation (Sikder et al., 2019). To fabricate bioactive diamond electrodes, in this work, laminin, an extracellular matrix protein known to be involved in inter-neuron adhesion and recognition, was used as an example biomolecule. Here, laminin was covalently coupled to diamond electrodes. Electrochemical analysis found that the covalently coupled films were robust and resulted in minimal change to the charge injection capacity of diamond electrodes. The successful binding of laminin and its biological activity was further confirmed using primary rat cortical neuron cultures, and the coated electrodes showed enhanced cell attachment densities and neurite outgrowth. The method proposed in this work is versatile and adaptable to many other biomolecules for producing bioactive diamond electrodes, which are expected to show reduced the inflammatory responses in vivo.


Subject(s)
Diamond , Laminin , Animals , Electrochemical Techniques , Electrodes , Electrodes, Implanted , Neurons , Rats
17.
Front Neural Circuits ; 14: 529345, 2020.
Article in English | MEDLINE | ID: mdl-33192335

ABSTRACT

The classical receptive field (CRF) of a spiking visual neuron is defined as the region in the visual field that can generate spikes when stimulated by a visual stimulus. Many visual neurons also have an extra-classical receptive field (ECRF) that surrounds the CRF. The presence of a stimulus in the ECRF does not generate spikes but rather modulates the response to a stimulus in the neuron's CRF. Neurons in the primate Middle Temporal (MT) area, which is a motion specialist region, can have directionally antagonistic or facilitatory surrounds. The surround's effect switches between directionally antagonistic or facilitatory based on the characteristics of the stimulus, with antagonistic effects when there are directional discontinuities but facilitatory effects when there is directional coherence. Here, we present a computational model of neurons in area MT that replicates this observation and uses computational building blocks that correlate with observed cell types in the visual pathways to explain the mechanism of this modulatory effect. The model shows that the categorization of MT neurons based on the effect of their surround depends on the input stimulus rather than being a property of the neurons. Also, in agreement with neurophysiological findings, the ECRFs of the modeled MT neurons alter their center-surround interactions depending on image contrast.


Subject(s)
Motion Perception/physiology , Neurons/physiology , Visual Cortex/cytology , Animals , Humans , Models, Theoretical , Visual Cortex/physiology , Visual Fields , Visual Pathways
18.
Healthc Technol Lett ; 7(3): 58-65, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32754339

ABSTRACT

Electrical stimulation has been used for decades in devices such as pacemakers, cochlear implants and more recently for deep brain and retinal stimulation and electroceutical treatment of disease. However, current spread from the electrodes limits the precision of neural activation, leading to a low quality therapeutic outcome or undesired side-effects. Alternative methods of neural stimulation such as optical stimulation offer the potential to deliver higher spatial resolution of neural activation. Direct optical stimulation is possible with infrared light, while visible light can be used to activate neurons if the neural tissue is genetically modified with a light sensitive ion channel. Experimentally, both methods have resulted in highly precise stimulation with little spread of activation at least in the cochlea, each with advantages and disadvantages. Infrared neural stimulation does not require modification of the neural tissue, but has very high power requirements. Optogenetics can achieve precision of activation with lower power, but only in conjunction with targeted insertion of a light sensitive ion channel into the nervous system via gene therapy. This review will examine the advantages and limitations of optical stimulation of neural tissue, using the cochlea as an exemplary model and recent developments for retinal and deep brain stimulation.

19.
Cereb Cortex ; 30(9): 5067-5087, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32368778

ABSTRACT

Visual object identification requires both selectivity for specific visual features that are important to the object's identity and invariance to feature manipulations. For example, a hand can be shifted in position, rotated, or contracted but still be recognized as a hand. How are the competing requirements of selectivity and invariance built into the early stages of visual processing? Typically, cells in the primary visual cortex are classified as either simple or complex. They both show selectivity for edge-orientation but complex cells develop invariance to edge position within the receptive field (spatial phase). Using a data-driven model that extracts the spatial structures and nonlinearities associated with neuronal computation, we quantitatively describe the balance between selectivity and invariance in complex cells. Phase invariance is frequently partial, while invariance to orientation and spatial frequency are more extensive than expected. The invariance arises due to two independent factors: (1) the structure and number of filters and (2) the form of nonlinearities that act upon the filter outputs. Both vary more than previously considered, so primary visual cortex forms an elaborate set of generic feature sensitivities, providing the foundation for more sophisticated object processing.


Subject(s)
Models, Neurological , Primary Visual Cortex/physiology , Recognition, Psychology/physiology , Visual Perception/physiology , Animals , Cats , Neurons/physiology
20.
J Neural Eng ; 17(3): 036016, 2020 06 29.
Article in English | MEDLINE | ID: mdl-32375131

ABSTRACT

OBJECTIVE: Retinal prostheses aim to restore vision in patients with retinal degenerative diseases, such as age-related macular degeneration and retinitis pigmentosa. By implanting an array of microelectrodes, such a device creates percepts in patients through electrical stimulation of surviving retinal neurons. A challenge for retinal prostheses when trying to return high quality vision is the unintended activation of retinal ganglion cells through the stimulation of passing axon bundles, which leads to patients reporting large, elongated patches of light instead of focal spots. APPROACH: In this work, we used calcium imaging to record the responses of retinal ganglion cells to electrical stimulation in explanted retina using rectangular electrodes placed with different orientations relative to the axon bundles. MAIN RESULTS: We showed that narrow, rectangular electrodes oriented parallel to the axon bundles can achieve focal stimulation. To further improve the strategy, we studied the impact of different stimulation waveforms and electrode configurations. We found the selectivity for focal stimulation to be higher when using short (33 µs), anodic-first biphasic pulses, with long electrode lengths and at least 50 µm electrode-to-retinal separation. Focal stimulation was, in fact, less selective when the electrodes made direct contact with the retinal surface due to unwanted preferential stimulation of the proximal axon bundles. SIGNIFICANCE: When employed in retinal prostheses, the proposed stimulation strategy is expected to provide improved quality of vision to the blind.


Subject(s)
Retinal Ganglion Cells , Visual Prosthesis , Axons , Electric Stimulation , Electrodes , Humans , Microelectrodes , Retina
SELECTION OF CITATIONS
SEARCH DETAIL
...