Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 76: 359-370, 2018 08.
Article in English | MEDLINE | ID: mdl-29890266

ABSTRACT

We present a novel additive manufacturing method for NiTi-Nb micro-trusses combining (i) extrusion-based 3D-printing of liquid inks containing NiTi and Nb powders, solvents, and a polymer binder into micro-trusses with 0/90° ABAB layers of parallel, ∼600 µm struts spaced 1 mm apart and (ii) subsequent heat-treatment to remove the binder and solvents, and then bond the NiTi powders using liquid phase sintering via the formation of a transient NiTi-Nb eutectic phase. We investigate the effects of Nb concentration (0, 1.5, 3.1, 6.7 at.% Nb) on the porosity, microstructure, and phase transformations of the printed NiTi-Nb micro-trusses. Micro-trusses with the highest Nb content exhibit long channels (from 3D-printing) and struts with smaller interconnected porosity (from partial sintering), resulting in overall porosities of ∼75% and low compressive stiffnesses of 1-1.6 GPa, similar to those of trabecular bone and in agreement with analytical and finite element modeling predictions. Diffusion of Nb into the NiTi particles from the bond regions results in a Ni-rich composition as the Nb replaces Ti atoms, leading to decreased martensite/austenite transformation temperatures. Adult human mesenchymal stem cells seeded on these micro-trusses showed excellent viability, proliferation, and extracellular matrix deposition over 14 days in culture. STATEMENT OF SIGNIFICANCE: Near-equiatomic NiTi micro-trusses are attractive for biomedical applications such as stents, actuators, and bone implants because of their combination of biocompatibility, low compressive stiffness, high surface area, and shape-memory or superelasticity. Extrusion-based 3D-printing of NiTi powder-based inks into micro-trusses is feasible, but the subsequent sintering of the powders into dense struts is unachievable due to low diffusivity, large particle size, and low packing density of the NiTi powders. We present a solution, whereby Nb powders are added to the NiTi inks, thus forming during sintering a eutectic NiTi-Nb liquid phase which bonds the solid NiTi powders and improves densification of the struts. This study investigates the microstructure, porosity, phase transformation behavior, compressive stiffness, and cytocompatibility of these printed NiTi-Nb micro-trusses.


Subject(s)
Materials Testing , Mesenchymal Stem Cells/metabolism , Nickel , Niobium , Printing, Three-Dimensional , Titanium , Trusses , Humans , Mesenchymal Stem Cells/cytology , Nickel/chemistry , Nickel/pharmacokinetics , Nickel/pharmacology , Niobium/chemistry , Niobium/pharmacokinetics , Niobium/pharmacology , Titanium/chemistry , Titanium/pharmacokinetics , Titanium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...