Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolites ; 14(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38786742

ABSTRACT

This study evaluated the differences in the metabolite profile of three n-3 FA fish oil formulations in 12 healthy participants: (1) standard softgels (STD) providing 600 mg n-3 FA; (2) enteric-coated softgels (ENT) providing 600 mg n-3 FA; (3) a new micellar formulation (LMF) providing 374 mg n-3 FA. The pharmacokinetics (PKs), such as the area under the plot of plasma concentration (AUC), and the peak blood concentration (Cmax) of the different FA metabolites including HDHAs, HETEs, HEPEs, RvD1, RvD5, RvE1, and RvE2, were determined over a total period of 24 h. Blood concentrations of EPA (26,920.0 ± 10,021.0 ng/mL·h) were significantly higher with respect to AUC0-24 following LMF treatment vs STD and ENT; when measured incrementally, blood concentrations of total n-3 FAs (EPA/DHA/DPA3) up to 11 times higher were observed for LMF vs STD (iAUC 0-24: 16,150.0 ± 5454.0 vs 1498.9 ± 443.0; p ≤ 0.0001). Significant differences in n-3 metabolites including oxylipins were found between STD and LMF with respect to 12-HEPE, 9-HEPE, 12-HETE, and RvD1; 9-HEPE levels were significantly higher following the STD vs. ENT treatment. Furthermore, within the scope of this study, changes in blood lipid levels (i.e., cholesterol, triglycerides, LDL, and HDL) were monitored in participants for up to 120 h post-treatment; a significant decrease in serum triglycerides was detected in participants (~20%) following the LMF treatment; no significant deviations from the baseline were detected for all the other lipid biomarkers in any of the treatment groups. Despite a lower administered dose, LMF provided higher blood concentrations of n-3 FAs and certain anti-inflammatory n-3 metabolites in human participants-potentially leading to better health outcomes.

2.
Plants (Basel) ; 11(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36235428

ABSTRACT

The most prominent horsetail species, Equisetum arvense, has an array of different medicinal properties, thus the proper authentication and differentiation of the plant from the more toxic Equisetum palustre is important. This study sought to identify different samples of E. arvense and E. palustre using three analytical methods. The first method involved the use of HPTLC analysis, as proposed by the European Pharmacopoeia. The second, HPLC-ESI-MS/MS, is capable of both identification and quantification and was used to determine the Equisetum alkaloid content in each sample. A third method was DNA barcoding, which identifies the samples based on their genetic make-up. Both HPTLC and HPLC-ESI-MS/MS proved to be suitable methods of identification, with HPLC-ESI-MS/MS proving the more sophisticated method for the quantification of alkaloids in the Equisetum samples and for determining the adulteration of E. arvense. For DNA barcoding, optimal primer pairs were elucidated to allow for the combined use of the rbcL and ITS markers to accurately identify each species. As new DNA marker sequences were added to GenBank, the reference library has been enriched for future work with these horsetail species.

SELECTION OF CITATIONS
SEARCH DETAIL
...