Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791425

ABSTRACT

Wound healing is a complex process involving a number of mechanisms [...].


Subject(s)
Wound Healing , Humans , Wounds and Injuries/therapy , Animals
3.
Int J Pharm ; 638: 122925, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37028573

ABSTRACT

ß-glucan is a well-known functional and bioactive food ingredient. Recently, some studies highlighted several interesting pharmacological activities, such as hypocholesterolemic, hypoglycemic, immunomodulatory, antitumor, antioxidant and anti-inflammatory. The aim of this study is to evaluate a novel application of ß-glucan, obtained from barley, for the development of formulations for skin use. Several water suspensions were obtained from barley flour of different particle sizes treated by high power ultrasonic (HPU) technique. Barley flour fraction in the range of 400-500 µm allowed to obtain a stable suspension, represented both by a water soluble and water insoluble fraction of ß-glucans, that showed excellent film forming ability. The plasticizer sorbitol as well as the bioadhesive biopolymer acacia gum were added to this suspension in order to obtain a gel suitable to prepare films by casting. The obtained films demonstrated suitable mechanical properties and ability to stimulate in vitro keratinocytes growth suggesting its possible application in dermatological field as for wound treatment. This study demonstrated the dual use of barley suspension: as excipient and as active ingredient.


Subject(s)
Hordeum , beta-Glucans , Ultrasonics , Flour , Water , Plant Extracts
4.
Pharmaceutics ; 14(3)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35335859

ABSTRACT

The success of wound treatment is conditioned by the combination of both suitable active ingredients and formulation. Grape seed extract (GSE), a waste by-product obtained by grape processing, is a natural source rich in many phenolic compounds responsible for antioxidant, anti-inflammatory, and antimicrobial activities and for this reason useful to be used in a wound care product. Bioadhesive polymeric patches have been realized by combining acacia gum (AG) and polyvinylpyrrolidone (PVP). Prototypes were prepared by considering different AG/PVP ratios and the most suitable in terms of mechanical and bioadhesion properties resulted in the 9.5/1.0 ratio. This patch was loaded with GSE combined with cyclic dextrin (CD) to obtain the molecular dispersion of the active ingredient in the dried formulation. The loaded patch resulted mechanically resistant and able to release GSE by a sustained mechanism reaching concentrations able to stimulate keratinocytes' growth, to exert both antibacterial and antioxidant activities.

5.
Pharmaceutics ; 13(3)2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33802607

ABSTRACT

Pycnogenol (PYC) is a concentrate of phenolic compounds derived from French maritime pine; its biological activity as antioxidant, anti-inflammatory and antibacterial suggests its use in the treatment of open wounds. A bioadhesive film, loaded with PYC, was prepared by casting, starting with a combination of two biopolymer acqueous solutions: xanthan gum (1% wt/wt) and sodium alginate (1.5% wt/wt), in a 2.5/7.5 (wt/wt) ratio. In both solutions, glycerol (10% wt/wt) was added as plasticizing agent. The film resulted in an adhesive capable to absorb a simulated wound fluid (~ 65% wt/wt within 1 h), therefore suitable for exuding wounds. The mechanical characterization showed that the film is deformable (elastic modulus E = 3.070 ± 0.044 MPa), suggesting adaptability to any type of surface and resistance to mechanical solicitations. PYC is released within 24 h by a sustained mechanism, achieving a maximum concentration of ~ 0.2 mg/mL, that is safe for keratinocytes, as shown by cytotoxicity studies. A concentration of 0.015 mg/mL is reached in the first 5 min after application, at which point PYC stimulates keratinocyte growth. These preliminary results suggest the use of PYC in formulations designed for topical use.

SELECTION OF CITATIONS
SEARCH DETAIL
...