Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 24(1): 514, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849739

ABSTRACT

BACKGROUND: Drought is a major determinant for growth and productivity of all crops, including cereals, and the drought-induced detrimental effects are anticipated to jeopardize world food security under the ongoing global warming scenario. Biostimulants such as humic acid (HA) can improve drought tolerance in many cereals, including maize and sorghum. These two plant species are genetically related; however, maize is more susceptible to drought than sorghum. The physiological and biochemical mechanisms underlying such differential responses to water shortage in the absence and presence of HA, particularly under field conditions, are not fully understood. RESULTS: Herein, the effects of priming maize and sorghum seeds in 100 mg L-1 HA on their vegetative growth and physiological responses under increased levels of drought (100%, 80%, and 60% field capacity) were simultaneously monitored in the field. In the absence of HA, drought caused 37.0 and 58.7% reductions in biomass accumulation in maize compared to 21.2 and 32.3% in sorghum under low and high drought levels, respectively. These responses were associated with differential retardation in overall growth, relative water content (RWC), photosynthetic pigments and CO2 assimilation in both plants. In contrast, drought increased root traits as well as H2O2, malondialdehyde, and electrolyte leakage in both species. HA treatment significantly improved the growth of both plant species under well-watered and drought conditions, with maize being more responsive than sorghum. HA induced a 29.2% increase in the photosynthetic assimilation rate in maize compared to 15.0% in sorghum under high drought level. The HA-promotive effects were also associated with higher total chlorophyll, stomatal conductance, RWC, sucrose, total soluble sugars, total carbohydrates, proline, and total soluble proteins. HA also reduced the drought-induced oxidative stress via induction of non-enzymic and enzymic antioxidants at significantly different extents in maize and sorghum. CONCLUSION: The current results identify significant quantitative differences in a set of critical physiological biomarkers underlying the differential responses of field-grown maize and sorghum plants against drought. They also reveal the potential of HA priming as a drought-alleviating biostimulant and as an effective approach for sustainable maize and sorghum production and possibly other crops in drought-affected lands.


Subject(s)
Droughts , Humic Substances , Sorghum , Zea mays , Sorghum/physiology , Sorghum/growth & development , Zea mays/physiology , Zea mays/growth & development , Stress, Physiological , Photosynthesis
2.
Plants (Basel) ; 12(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37176891

ABSTRACT

The sensitivity of rice plants to salinity is a major challenge for rice growth and productivity in the salt-affected lands. Priming rice seeds in biostimulants with stress-alleviating potential is an effective strategy to improve salinity tolerance in rice. However, the mechanisms of action of these compounds are not fully understood. Herein, the impact of priming rice seeds (cv. Giza 179) with 100 mg/L of humic acid on growth and its underlaying physiological processes under increased magnitudes of salinity (EC = 0.55, 3.40, 6.77, 8.00 mS/cm) during the critical reproductive stage was investigated. Our results indicated that salinity significantly reduced Giza 179 growth indices, which were associated with the accumulation of toxic levels of Na+ in shoots and roots, a reduction in the K+ and K+/Na+ ratio in shoots and roots, induced buildup of malondialdehyde, electrolyte leakage, and an accumulation of total soluble sugars, sucrose, proline, and enzymic and non-enzymic antioxidants. Humic acid application significantly increased growth of the Giza 179 plants under non-saline conditions. It also substantially enhanced growth of the salinity-stressed Giza 179 plants even at 8.00 mS/cm. Such humic acid ameliorating effects were associated with maintaining ionic homeostasis, appropriate osmolytes content, and an efficient antioxidant defense system. Our results highlight the potential role of humic acid in enhancing salt tolerance in Giza 179.

3.
Plants (Basel) ; 11(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35214869

ABSTRACT

Understanding salt tolerance mechanisms in halophytes is critical for improving the world's agriculture under climate change scenarios. Herein, the physiological and metabolic responses of Suaeda monoica, Suaeda vermiculata, and Suaeda schimperi against abiotic stress in their natural saline environment on the east coast of the Red Sea were investigated. The tested species are exposed to different levels of salinity along with elemental disorders, including deficiency in essential nutrients (N&P in particular) and/or elevated levels of potentially toxic elements. The tested species employed common and species-specific tolerance mechanisms that are driven by the level of salinity and the genetic constitution of Suaeda species. These mechanisms include: (i) utilization of inorganic elements as cheap osmotica (Na+ in particular), (ii) lowering C/N ratio (S. monoica and S. schimperi) that benefits growth priority, (iii) efficient utilization of low soil N (S. vermiculata) that ensures survival priority, (v) biosynthesis of betacyanin (S. schimperi and S. vermiculata) and (vi) downregulation of overall metabolism (S. vermiculata) to avoid oxidative stress. Based on their cellular metal accumulation, S. monoica is an efficient phytoextractor of Cr, Co, Cu, Ni, and Zn, whereas S. vermiculata is a hyper-accumulator of Hg and Pb. S. schimperi is an effective phytoextractor of Fe, Hg, and Cr. These results highlight the significance of Suaeda species as a promising model halophyte and as phytoremediators of their hostile environments.

4.
Plant Biotechnol J ; 17(12): 2272-2285, 2019 12.
Article in English | MEDLINE | ID: mdl-31033139

ABSTRACT

Functional stay-green is a valuable trait that extends the photosynthetic period, increases source capacity and biomass and ultimately translates to higher grain yield. Selection for higher yields has increased stay-green in modern maize hybrids. Here, we report a novel QTL controlling functional stay-green that was discovered in a mapping population derived from the Illinois High Protein 1 (IHP1) and Illinois Low Protein 1 (ILP1) lines, which show very different rates of leaf senescence. This QTL was mapped to a single gene containing a NAC-domain transcription factor that we named nac7. Transgenic maize lines where nac7 was down-regulated by RNAi showed delayed senescence and increased both biomass and nitrogen accumulation in vegetative tissues, demonstrating NAC7 functions as a negative regulator of the stay-green trait. More importantly, crosses between nac7 RNAi parents and two different elite inbred testers produced hybrids with prolonged stay-green and increased grain yield by an average 0.29 megagram/hectare (4.6 bushel/acre), in 2 years of multi-environment field trials. Subsequent RNAseq experiments, one employing nac7 RNAi leaves and the other using leaf protoplasts overexpressing Nac7, revealed an important role for NAC7 in regulating genes in photosynthesis, chlorophyll degradation and protein turnover pathways that each contribute to the functional stay-green phenotype. We further determined the putative target of NAC7 and provided a logical extension for the role of NAC7 in regulating resource allocation from vegetative source to reproductive sink tissues. Collectively, our findings make a compelling case for NAC7 as a target for improving functional stay-green and yields in maize and other crops.


Subject(s)
Photosynthesis , Quantitative Trait Loci , Transcription Factors/genetics , Zea mays/genetics , Biomass , Edible Grain/genetics , Edible Grain/growth & development , Nitrogen , Plant Leaves , Plant Proteins/genetics , Plants, Genetically Modified , Zea mays/growth & development
5.
Molecules ; 20(2): 2388-404, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25647576

ABSTRACT

Sorghum responds to the ingress of the fungal pathogen Colletotrichum sublineolum through the biosynthesis of 3-deoxyanthocyanidin phytoalexins at the site of primary infection. Biosynthesis of 3-deoxyanthocyanidins in sorghum requires a MYB transcription factor encoded by yellow seed1 (y1), an orthologue of the maize gene pericarp color1 (p1). Maize lines with a functional p1 and flavonoid structural genes do not produce foliar 3-deoxyanthocyanidins in response to fungal ingress. To perform a comparative metabolic analysis of sorghum and maize 3-deoxyanthocyanidin biosynthetic pathways, we developed transgenic maize lines expressing the sorghum y1 gene. In maize, the y1 transgene phenocopied p1-regulated pigment accumulation in the pericarp and cob glumes. LC-MS profiling of fungus-challenged Y1-maize leaves showed induction of 3-deoxyanthocyanidins, specifically luteolinidin. Y1-maize plants also induced constitutive and higher levels of flavonoids in leaves. In response to Colletotrichum graminicola, Y1-maize showed a resistance response.


Subject(s)
Plant Leaves/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Zea mays/genetics , Anthocyanins/metabolism , Colletotrichum/physiology , Disease Resistance , Flavonoids/metabolism , Host-Pathogen Interactions , Pigmentation , Plant Diseases/microbiology , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Proteins/biosynthesis , Plants, Genetically Modified , Sorghum/genetics , Transcription Factors/biosynthesis , Zea mays/metabolism , Zea mays/microbiology
6.
Genetics ; 184(4): 915-26, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20083611

ABSTRACT

In Sorghum bicolor, a group of phytoalexins are induced at the site of infection by Colletotrichum sublineolum, the anthracnose fungus. These compounds, classified as 3-deoxyanthocyanidins, have structural similarities to the precursors of phlobaphenes. Sorghum yellow seed1 (y1) encodes a MYB transcription factor that regulates phlobaphene biosynthesis. Using the candystripe1 transposon mutagenesis system in sorghum, we have isolated functional revertants as well as loss-of-function alleles of y1. These near-isogenic lines of sorghum show that, compared to functionally revertant alleles, loss of y1 lines do not accumulate phlobaphenes. Molecular characterization of two null y1 alleles shows a partial internal deletion in the y1 sequence. These null alleles, designated as y1-ww1 and y1-ww4, do not accumulate 3-deoxyanthocyanidins when challenged with the nonpathogenic fungus Cochliobolus heterostrophus. Further, as compared to the wild-type allele, both y1-ww1 and y1-ww4 show greater susceptibility to the pathogenic fungus C. sublineolum. In fungal-inoculated wild-type seedlings, y1 and its target flavonoid structural genes are coordinately expressed. However, in y1-ww1 and y1-ww4 seedlings where y1 is not expressed, steady-state transcripts of its target genes could not be detected. Cosegregation analysis showed that the functional y1 gene is genetically linked with resistance to C. sublineolum. Overall results demonstrate that the accumulation of sorghum 3-deoxyanthocyanidin phytoalexins and resistance to C. sublineolum in sorghum require a functional y1 gene.


Subject(s)
Flavonoids/metabolism , Immunity, Innate , Plant Diseases/immunology , Plant Leaves/microbiology , Sesquiterpenes/metabolism , Sorghum/metabolism , Transcription Factors/metabolism , Alleles , Anthocyanins/biosynthesis , Anthocyanins/chemistry , Anthocyanins/metabolism , Ascomycota/physiology , Flavonoids/biosynthesis , Immunity, Innate/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Sequence Deletion , Sorghum/genetics , Sorghum/microbiology , Transcription Factors/deficiency , Transcription Factors/genetics , Phytoalexins
SELECTION OF CITATIONS
SEARCH DETAIL
...