Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Orthod Dentofacial Orthop ; 155(2): 254-263, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30712697

ABSTRACT

INTRODUCTION: Nonhuman animal models have been used extensively to study orthodontic tooth movement (OTM). However, rodent models have disadvantages, including a reported reduction in bone volume during OTM. The purpose of this study was to determine the viability of a skeletal anchorage and the effect of low force (∼3 cN) on interradicular bone volume during OTM. METHODS: Ninety Sprague-Dawley rats were divided into 5 time points. A miniscrew and a nickel titanium coil spring placed a load of 3 cN (experimental) or 0 cN (sham) on the maxillary first molar in a split-mouth design. Displacement of the first molar and bone volume/total volume (BV/TV) in the interradicular region were quantified. RESULTS: The success rate of the miniscrew was 98.9% (89 out of 90). Linear and angular tooth movement increased steadily (mean 0.1 mm/wk, 0.48 mm at 40 days). BV/TV was significantly reduced between the tooth movement and non-tooth movement sides in the 3 cN group: by 13%, 23%, 15%, 23%, and 16% at 3, 7, 14, 28, and 40 days, respectively. CONCLUSIONS: Our model resulted in efficient OTM without skeletal anchorage failure. BV/TV reduction was lower than in previous reports. This novel validated model is likely to be the basis for future studies.


Subject(s)
Maxilla/anatomy & histology , Orthodontic Anchorage Procedures , Tooth Movement Techniques/methods , Animals , Male , Models, Animal , Organ Size , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...