Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
3 Biotech ; 12(1): 7, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34956810

ABSTRACT

A novel Cr(VI)-resistant haloalkaliphilic bacterial strain NRC-R, identified as Salipaludibacillus agaradhaerens, was isolated from hypersaline soda lakes and characterized for its Cr(VI) bioreduction efficiency. Strain NRC-R grew well and effectively reduced Cr(VI) under a wide range of sodium chloride, pH, shaking velocity and temperature, showing maximum Cr(VI) reduction at 8% NaCl, pH 10, 150 rpm and 35 °C, respectively. Strain NRC-R was able to grow and reduce Cr(VI) effectively in the presence of different heavy metals and oxyanions (Pb2+, Zn2+, Co2+, Mn2+, Ni2+, Mo2+, HPO4 -, NO3 -, SO4 2- and HCO3 -). Furthermore, Fe3+ and Cu2+ significantly enhanced the Cr(VI) removal by about 1.5 fold. Strain NRC-R could reduce Cr(VI) using a variety of electron donors, exhibiting a maximum reduction in the presence of NADH and fructose. The bioremoval of Cr(VI) using strain NRC-R was due to direct enzymatic reduction and the chromate reductase activity was mainly detected in the bacterial cell membrane. Under the optimized conditions, strain NRC-R showed a remarkable Cr(VI) bioreduction with highest reduction rate of 240 uM/h. Cr(VI) concentrations of up to 3 mM (888.5 mg/L) and 4 mM (1177 mg/L) were completely reduced within 16 h and 32 h, respectively. TEM and SEM-EDX analyses confirmed the biosorption of chromium species into the cells. To the best of our knowledge, this is the first report about Cr(VI) reduction by S. agaradhaerens. In conclusion, S. agaradhaerens NRC-R was a highly efficient Cr(VI) reducing haloalkaliphilic bacterium that has a significant potential in the bioremediation of Cr(VI)-contaminated environments. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-03082-2.

2.
Int J Biol Macromol ; 166: 557-566, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33186653

ABSTRACT

In this study, serine alkaline protease from halotolerant alkaliphilic Salipaludibacillus agaradhaerens strain AK-R was purified and immobilized onto double mesoporous core-shell silica (DMCSS) nanospheres. Covalent immobilization of AK-R protease onto activated DMCSS-NH2 nanospheres was more efficient than physical adsorption and was applied in further studies. DMCSS-NH2 nanospheres showed high loading capacity of 103.8 µg protein/mg nanospheres. Relative to free AK-R protease, the immobilized enzyme exhibited shifts in the optimal temperature and pH from 60 to 65 °C and pH 10.0 to 10.5, respectively. While the soluble enzyme retained 47.2% and 9.1% of its activity after treatment for 1 h at 50 and 60 °C, the immobilized protease maintained 87.7% and 48.3%, respectively. After treatment for 2 h at pH 5 and 13, the immobilized protease maintained 73.6% and 53.4% of its activity, whereas the soluble enzyme retained 32.9% and 1.4%, respectively. Furthermore, the immobilized AK-R protease showed significant improvement of enzyme stability in high concentration of NaCl, organic solvents, surfactants, and commercial detergents. In addition, the immobilized protease exhibited a very good operational stability, retaining 79.8% of its activity after ten cycles. The results clearly suggest that the developed immobilized protease system is a promising nanobiocatalyst for various protease applications.


Subject(s)
Bacillaceae/enzymology , Bacterial Proteins/metabolism , Endopeptidases/metabolism , Enzymes, Immobilized/metabolism , Nanospheres/chemistry , Biocatalysis/drug effects , Detergents/pharmacology , Enzyme Stability/drug effects , Hydrogen-Ion Concentration , Nanospheres/ultrastructure , Oxidants/pharmacology , Porosity , Salinity , Silicon Dioxide/chemistry , Solvents/chemistry , Surface-Active Agents/pharmacology , Temperature
3.
3 Biotech ; 9(11): 391, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31656729

ABSTRACT

Herein, we report the purification and characterization of an alkaline protease from the alkaliphilic Salipaludibacillus agaradhaerens (formerly Bacillus agaradhaerens) strain AK-R, which was previously isolated from Egyptian soda lakes. The purification procedures resulted in enzyme purification up to 13.3-fold, with a recovery yield of 16.3% and a specific activity of 3488 U/mg protein. AK-R protease was a monomeric protein with an estimated molecular weight of 33.0 kDa. The optimum pH and temperature for AK-R protease were pH 10 and 60 °C, respectively. The enzyme thermostability was significantly enhanced in the presence of CaCl2 by approximately 1.3-fold. Moreover, under optimal conditions, the K m and V max values of the enzyme were 2.63 mg/ml and 4166.7 U/mg, respectively. PMSF caused complete inhibition of the enzyme activity, suggesting that AK-R belongs to the serine protease family. In addition, the enzyme was completely inhibited by EDTA, revealing the requirement of metal ions for AK-R protease activity; hence, it can be classified as a metalloprotease. AK-R protease is a mostly thiol-independent enzyme, since thiol reductants such as ß-mercaptoethanol and dithiothreitol had no effect on the enzyme activity. AK-R protease exhibited high stability in several organic solvents, including butanol, amyl alcohol, dimethyl ether, toluene, diethyl ether and methanol. Moreover, AK-R protease showed significant stability to a variety of surfactants and commercial detergents. The features and properties of AK-R alkaline protease are favourable and suggest its potential applications in various industries, particularly in the laundry detergent industry.

5.
Clin Ter ; 169(5): e217-e223, 2018.
Article in English | MEDLINE | ID: mdl-30393808

ABSTRACT

INTRODUCTION: The first step in the forensic identification is sex determination followed by age and stature estimation, as both are sex-dependent. The mandible is the largest, strongest and most durable bone in the face. Mandible is important for sex confirmation in absence of a complete pelvis and skull. AIM: The aim of the present study was to determine sex of human mandible from morphology, morphometric measurements as well as discriminant function analysis from the CT scan. MATERIALS AND METHODS: The present retrospective study comprised 79 subjects (48 males, 31 females), with age group between 18 and 74 years, and were obtained from the post mortem computed tomography data in the Hospital Kuala Lumpur. The parameters were divided into three morphologic and nine morphometric parameters, which were measured by using Osirix MD Software 3D Volume Rendering. RESULTS: The Chi-square test showed that men were significantly association with square-shaped chin (92%), prominent muscle marking (85%) and everted gonial glare, whereas women had pointed chin (84%), less prominent muscle marking (90%) and inverted gonial glare (80%). All parameter measurements showed significantly greater values in males than in females by independent t-test (p< 0.01). By discriminant analysis, the classification accuracy was 78.5%, the sensitivity was 79.2% and the specificity was 77.4%. The discriminant function equation was formulated based on bigonial breath and condylar height, which were the best predictors. CONCLUSION: In conclusion, the mandible could be distinguished according to the sex. The results of the study can be used for identification of damaged and/or unknown mandible in the Malaysian population.


Subject(s)
Mandible/anatomy & histology , Mandible/diagnostic imaging , Sex Determination by Skeleton/methods , Adolescent , Adult , Aged , Discriminant Analysis , Female , Forensic Anthropology , Humans , Imaging, Three-Dimensional , Malaysia , Male , Middle Aged , Retrospective Studies , Tomography, X-Ray Computed , Young Adult
6.
Int J Fertil Steril ; 12(3): 249-256, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29935072

ABSTRACT

BACKGROUND: Titanium dioxide (TiO2) is a white pigment which is used in paints, plastics, etc. It is reported that TiO2 induces oxidative stress and DNA damage. N-acetylcysteine (NAC) has been used to fight oxidative stress-induced damage in different tissues. The objective of this study was to evaluate the toxic effects of orally administered TiO2 nanoparticles and the possible protective effect of NAC on the testes of adult male albino rats. MATERIALS AND METHODS: In this experimental study, 50 adult male albino rats were classified into five groups. Group I was the negative control, group II was treated with gum acacia solution , group III was treated with NAC, group IV was treated with TiO2 nanoparticles, and group V was treated with 100 mg/kg of NAC and 1200 mg/kg TiO2 nanoparticles. Total testosterone, glutathione (GSH), and serum malondialdehyde (MDA) levels were estimated. The testes were subjected to histopathological, electron microscopic examinations, and immunohistochemical detection for tumor necrosis factor (TNF)-α. Cells from the left testis were examined to detect the degree of DNA impairment by using the comet assay. RESULTS: TiO2 nanoparticles induced histopathological and ultrastructure changes in the testes as well as positive TNF-α immunoreaction in the testicular tissue. Moreover, there was an increase in serum MDA while a decrease in testosterone and GSH levels in TiO2 nanoparticles-treated group. TiO2 resulted in DNA damage. Administration of NAC to TiO2- treated rats led to improvement of the previous parameters with modest protective effects against DNA damage. CONCLUSION: TiO2-induced damage to the testes was mediated by oxidative stress. Notably, administration of NAC protected against TiO2's damaging effects.

7.
Anat Cell Biol ; 50(2): 86-92, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28713610

ABSTRACT

Sex determination is one of the main steps in the identification of human skeletal remains. It constitutes an initial step in personal identification from the skeletal remains. The aim of the present study was to provide the population-specific sex discriminating osteometric standards to aid human identification. The present study was conducted on 87 (174 sides) slices of crania using postmortem computed tomography in 45 males and 42 females, aged between 18 and 75 years. About 22 parameters of crania were measured using Osirix software 3-D Volume Rendering. Results showed that all parameters were significantly higher in males than in females except for orbital height of the left eye by independent t test (P<0.01). By discriminant analysis, the classification accuracy was 85.1%, and by regression, the classification accuracy ranged from 78.2% to 86.2%. In conclusion, cranium can be used to distinguish between males and females in the Malaysian population. The results of the present study can be used as a forensic tool for identification of unknown crania.

8.
Braz. j. microbiol ; 48(3): 499-508, July-Sept. 2017. tab, graf
Article in English | LILACS | ID: biblio-889148

ABSTRACT

Abstract Salmonella is recognized as a common foodborne pathogen, causing major health problems in Saudi Arabia. Herein, we report epidemiology, antimicrobial susceptibility and the genetic basis of resistance among S. enterica strains isolated in Saudi Arabia. Isolation of Salmonella spp. from clinical and environmental samples resulted in isolation of 33 strains identified as S. enterica based on their biochemical characteristics and 16S-rDNA sequences. S. enterica serovar Enteritidis showed highest prevalence (39.4%), followed by S. Paratyphi (21.2%), S. Typhimurium (15.2%), S. Typhi and S. Arizona (12.1%), respectively. Most isolates were resistant to 1st and 2nd generation cephalosporin; and aminoglycosides. Moreover, several S. enterica isolates exhibited resistance to the first-line antibiotics used for Salmonellosis treatment including ampicillin, trimethoprim-sulfamethoxazole and chloramphenicol. In addition, the results revealed the emergence of two S. enterica isolates showing resistance to third-generation cephalosporin. Analysis of resistance determinants in S. enterica strains (n = 33) revealed that the resistance to β-lactam antibiotics, trimethoprim-sulfamethoxazole, chloramphenicol, and tetracycline, was attributed to the presence of carb-like, dfrA1, floR, tetA gene, respectively. On the other hand, fluoroquinolone resistance was related to the presence of mutations in gyrA and parC genes. These findings improve the information about foodborne Salmonella in Saudi Arabia, alarming the emergence of multi-drug resistant S. enterica strains, and provide useful data about the resistance mechanisms.


Subject(s)
Humans , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Salmonella enterica/drug effects , Salmonella enterica/isolation & purification , Salmonella Infections/microbiology , Environmental Microbiology , Integrons , Microbial Sensitivity Tests , Salmonella enterica/classification , Salmonella enterica/genetics , Saudi Arabia , Serotyping , Tetracycline/pharmacology
9.
Braz J Microbiol ; 48(3): 499-508, 2017.
Article in English | MEDLINE | ID: mdl-28245965

ABSTRACT

Salmonella is recognized as a common foodborne pathogen, causing major health problems in Saudi Arabia. Herein, we report epidemiology, antimicrobial susceptibility and the genetic basis of resistance among S. enterica strains isolated in Saudi Arabia. Isolation of Salmonella spp. from clinical and environmental samples resulted in isolation of 33 strains identified as S. enterica based on their biochemical characteristics and 16S-rDNA sequences. S. enterica serovar Enteritidis showed highest prevalence (39.4%), followed by S. Paratyphi (21.2%), S. Typhimurium (15.2%), S. Typhi and S. Arizona (12.1%), respectively. Most isolates were resistant to 1st and 2nd generation cephalosporin; and aminoglycosides. Moreover, several S. enterica isolates exhibited resistance to the first-line antibiotics used for Salmonellosis treatment including ampicillin, trimethoprim-sulfamethoxazole and chloramphenicol. In addition, the results revealed the emergence of two S. enterica isolates showing resistance to third-generation cephalosporin. Analysis of resistance determinants in S. enterica strains (n=33) revealed that the resistance to ß-lactam antibiotics, trimethoprim-sulfamethoxazole, chloramphenicol, and tetracycline, was attributed to the presence of carb-like, dfrA1, floR, tetA gene, respectively. On the other hand, fluoroquinolone resistance was related to the presence of mutations in gyrA and parC genes. These findings improve the information about foodborne Salmonella in Saudi Arabia, alarming the emergence of multi-drug resistant S. enterica strains, and provide useful data about the resistance mechanisms.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Salmonella Infections/microbiology , Salmonella enterica/drug effects , Salmonella enterica/isolation & purification , Environmental Microbiology , Humans , Integrons , Microbial Sensitivity Tests , Salmonella enterica/classification , Salmonella enterica/genetics , Saudi Arabia , Serotyping , Tetracycline/pharmacology
10.
Biosci. j. (Online) ; 32(6): 1604-1618, nov./dec. 2016. ilus, graf
Article in English | LILACS | ID: biblio-965817

ABSTRACT

Alkaline proteases are hydrolytic enzymes that cleave peptide bonds in proteins and peptides in alkaline conditions, which occupy a pivotal importance with respect to their industrial applications. This study aimed to isolate new alkaline protease producing alkaliphilic bacteria from Egyptian soda lakes and optimize the fermentation process to enhance the enzyme production. The extensive screening process of the samples collected from Egyptian soda lakes resulted in isolation of a potent alkaline protease producing alkaliphilic strain AK-R. The isolate was identified as Bacillus agaradhaerens strain AK-R based on 16S rRNA gene analysis (99%). Wheat bran and gelatin supported maximum alkaline protease production as carbon and nitrogen sources, respectively. Strain AK-R is halo-tolerant thermotolerant alkaliphilic bacterium in nature, as it can grow over a wide range of NaCl concentrations (up to 25%) and up to 55 °C, with maximal growth and enzyme production at 2.5-5%, and pH 11 at 35 °C. Among the tested cations, only Mg2+ and Ca2+ ions significantly enhanced the enzyme production by about 1.2, and 1.3 fold compared to control, respectively. Alkaline protease secretion was coherent with the growth pattern, reaching maximal yield after about 32 h (mid stationary phase). In conclusion a new halo-tolerant thermo-tolerant alkaliphilic alkaline protease producing Bacillus agaradhaerens strain AK-R was isolated from Egyptian soda lakes. Optimization of the nutritional and cultivation conditions resulted in increase of enzyme yield by 20 fold. Strain AK-R and its extracellular alkaline protease with salt, pH and temperature, tolerance signify their potential application in laundry and pharmaceuticals industries.


Proteases alcalinas são enzimas hidrolíticas que quebram ligações peptídicas em proteínas e peptídeos em condições alcalinas, o que ocupa uma importância fundamental em relação às suas aplicações industriais. Este estudo teve como objetivo isolar novas proteases alcalinas e produzir bactérias alcalófilas a partir dos lagos salgados alcalinos egípcios e otimizar o processo de fermentação para aumentar a produção de enzimas. O extensivo processo de triagem das amostras coletadas dos lagos salgados alcalinos egípcios resultou no isolamento de uma protease alcalina potente produzindo uma estirpe alcalófila AK-R. O isolado foi identificado como sendo a estirpe AK-R de Bacillus agaradhaerens baseado na análise de genes 16S rRNA (99%). O farelo de trigo e a gelatina suportaram a produção máxima de protease alcalina como fontes de carbono e nitrogênio, respectivamente. A estirpe AK-R é uma bactéria alcalófila halotolerante e termotolerante, pois pode crescer dentro de uma vasta gama de concentrações de NaCl (até 25%) e até 55ºC, com crescimento e produção de enzimas máximos a 2.5-5% e pH 11 a 35ºC. Dentre os cátions testados, somente os íons Mg2+ e Ca2+ aumentaram significativamente a produção de enzimas em cerca de 1.2 e 1.3 em comparação ao controle, respectivamente. A secreção de protease alcalina foi coerente com o padrão de crescimento, atingindo o rendimento máximo após 32h (fase estacionária média). Pode-se concluir que uma nova estirpe AK-R de Bacillus agaradhaerens halotolerante, termotolerante e alcalófila produtora de protease alcalina foi isolada a partir dos lagos salgados alcalinos egípcios. A otimização das condições de nutrição e cultivo resultou num aumento da produção de enzima em 20 vezes. A estirpe AK-R e a sua protease alcalina extracelular com tolerância ao sal, pH e temperatura tornam significantes as suas potenciais aplicações nas indústrias farmacêutica e de lavanderia.


Subject(s)
Peptide Hydrolases , Enzymes , Fermentation
11.
Bioprocess Biosyst Eng ; 39(5): 793-805, 2016 May.
Article in English | MEDLINE | ID: mdl-26861651

ABSTRACT

Alkaline protease from alkaliphilic Bacillus sp. NPST-AK15 was immobilized onto functionalized and non-functionalized rattle-type magnetic core@mesoporous shell silica (RT-MCMSS) nanoparticles by physical adsorption and covalent attachment. However, the covalent attachment approach was superior for NPST-AK15 protease immobilization onto the activated RT-MCMSS-NH2nanoparticles and was used for further studies. In comparison to free protease, the immobilized enzyme exhibited a shift in the optimal temperature and pH from 60 to 65 °C and pH 10.5-11.0, respectively. While free protease was completely inactivated after treatment for 1 h at 60 °C, the immobilized enzyme maintained 66.5% of its initial activity at similar conditions. The immobilized protease showed higher k cat and K m , than the soluble enzyme by about 1.3-, and 1.2-fold, respectively. In addition, the results revealed significant improvement of NPST-AK15 protease stability in variety of organic solvents, surfactants, and commercial laundry detergents, upon immobilization onto activated RT-MCMSS-NH2nanoparticles. Importantly, the immobilized protease maintained significant catalytic efficiency for ten consecutive reaction cycles, and was separated easily from the reaction mixture using an external magnetic field. To the best of our knowledge this is the first report about protease immobilization onto rattle-type magnetic core@mesoporous shell silica nanoparticles that also defied activity-stability tradeoff. The results clearly suggest that the developed immobilized enzyme system is a promising nanobiocatalyst for various bioprocess applications requiring a protease.


Subject(s)
Bacterial Proteins/chemistry , Detergents/chemistry , Endopeptidases/chemistry , Nanoparticles , Bacterial Proteins/isolation & purification , Biocatalysis , Endopeptidases/isolation & purification , Enzymes, Immobilized/chemistry , Hydrogen-Ion Concentration , Kinetics , Microscopy, Electron, Transmission , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
12.
Int J Mol Sci ; 17(2)2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26840303

ABSTRACT

The stability and reusability of soluble enzymes are of major concerns, which limit their industrial applications. Herein, alkaline protease from Bacillus sp. NPST-AK15 was immobilized onto hollow core-mesoporous shell silica (HCMSS) nanospheres. Subsequently, the properties of immobilized proteases were evaluated. Non-, ethane- and amino-functionalized HCMSS nanospheres were synthesized and characterized. NPST-AK15 was immobilized onto the synthesized nano-supports by physical and covalent immobilization approaches. However, protease immobilization by covalent attachment onto the activated HCMSS-NH2 nanospheres showed highest immobilization yield (75.6%) and loading capacity (88.1 µg protein/mg carrier) and was applied in the further studies. In comparison to free enzyme, the covalently immobilized protease exhibited a slight shift in the optimal pH from 10.5 to 11.0, respectively. The optimum temperature for catalytic activity of both free and immobilized enzyme was seen at 60 °C. However, while the free enzyme was completely inactivated when treated at 60 °C for 1 h the immobilized enzyme still retained 63.6% of its initial activity. The immobilized protease showed higher V(max), k(cat) and k(cat)/K(m), than soluble enzyme by 1.6-, 1.6- and 2.4-fold, respectively. In addition, the immobilized protease affinity to the substrate increased by about 1.5-fold. Furthermore, the enzyme stability in various organic solvents was significantly enhanced upon immobilization. Interestingly, the immobilized enzyme exhibited much higher stability in several commercial detergents including OMO, Tide, Ariel, Bonux and Xra by up to 5.2-fold. Finally, the immobilized protease maintained significant catalytic efficiency for twelve consecutive reaction cycles. These results suggest the effectiveness of the developed nanobiocatalyst as a candidate for detergent formulation and peptide synthesis in non-aqueous media.


Subject(s)
Bacterial Proteins/chemistry , Endopeptidases/chemistry , Enzymes, Immobilized/chemistry , Nanospheres/chemistry , Bacillus/enzymology , Bacterial Proteins/metabolism , Endopeptidases/metabolism , Enzyme Stability , Enzymes, Immobilized/metabolism , Porosity , Silicon Dioxide/chemistry
13.
Extremophiles ; 19(5): 961-71, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26159877

ABSTRACT

Alkaline protease produced by the halotolerant alkaliphilic Bacillus sp. strain NPST-AK15 was purified to homogeneity by the combination of ammonium sulfate precipitation, anion-exchange and gel permeation chromatography. The purified enzyme was a monomeric protein with an estimated molecular weight of 32 kDa. NPST-AK15 protease was highly active and stable over a wide pH range, with a maximal activity at pH 10.5. The enzyme showed optimum activity at 60 °C and was stable at 30-50 °C for at least 1 h. Thermal stability of the purified protease was substantially improved by CaCl2 (1.1- to 6.6-fold). The K m, V max and k cat values for the enzyme were 2.5 mg ml(-1), 42.5 µM min(-1) mg(-1), and 392.46 × 10(3) min(-1), respectively. NPST-AK15 protease activity was strongly inhibited by PMSF, suggesting that the enzyme is a serine protease. The enzyme was highly stable in NaCl up to 20 % (w/v). Moreover, the purified enzyme was stable in several organic solvents such as diethyl ether, benzene, toluene, and chloroform. In addition, it showed high stability and compatibility with a wide range of surfactants and commercial detergents and was slightly activated by hydrogen peroxide. These features of NPST-AK15 protease make this enzyme a promising candidate for application in the laundry and pharmaceutical industries.


Subject(s)
Bacillus/enzymology , Bacterial Proteins/chemistry , Serine Proteases/chemistry , Calcium Chloride/chemistry , Detergents/chemistry , Enzyme Stability , Hot Temperature , Salinity
14.
Electron. j. biotechnol ; 18(3): 175-180, May 2015. ilus, graf, tab
Article in English | LILACS | ID: lil-750644

ABSTRACT

Background Enterococcus faecalis is considered to be one of most prevalent species in the oral cavity, particularly in endodontic infections. The aim of the present study was to investigate the prevalence of E. faecalis in dental root canals, clonal diversity by restriction fragment length polymorphism (RFLP) and randomly amplified polymorphic DNA (RAPD-PCR) analysis, and the antibiotic susceptibility of E. faecalis isolates. Results Among the bacterial strains isolated from dental root canal specimens (n = 82), E. faecalis was determined to have the highest prevalence followed by Streptococcus viridians, Leuconostoc mesenteroides, Staphylococcus aureus, Streptococcus mitis, and Pediococcus pentosaceus. Cluster analysis of RAPD-PCR and RFLP patterns of the E. faecalis isolates discriminated five and six different genotypes, respectively. Among the tested strains, 43%, 52% and 5% were susceptible, intermediate resistant, and resistant to erythromycin, respectively. In addition, one strain (E-12) was intermediate resistant to linezolid, and one isolate (E-16) was resistant to tetracycline. Interestingly, many of the intermediate resistant/resistant strains were grouped in clusters 5 and 6, according RAPD and to RFLP, respectively. Conclusions E. faecalis demonstrated the highest prevalence in the tested dental root canal specimens collected from Saudi patients and were grouped into five to six different genotypes. Different levels of antimicrobial susceptibility were observed in the tested E. faecalis strains, which clearly indicated that although bacterial strains may be similar, point mutations can result in extreme susceptibility or resistance to various antibiotics. This phenomenon is a cause for concern for clinicians in the treatment of dental infections caused by E. faecalis.


Subject(s)
Humans , Male , Female , Adolescent , Adult , Middle Aged , Aged , Young Adult , Bacterial Infections/microbiology , Enterococcus faecalis/isolation & purification , Enterococcus faecalis/genetics , Drug Resistance, Bacterial , Dental Pulp Diseases/microbiology , Genetic Variation , Polymorphism, Restriction Fragment Length , Microbial Sensitivity Tests , Random Amplified Polymorphic DNA Technique , Genotype
15.
Electron. j. biotechnol ; 18(3): 236-243, May 2015. ilus, graf
Article in English | LILACS | ID: lil-750653

ABSTRACT

Background Alkaline proteases are among the most important classes of industrial hydrolytic enzymes. The industrial demand for alkaline proteases with favorable properties continues to enhance the search for new enzymes. The present study focused on isolation of new alkaline producing alkaliphilic bacteria from hyper saline soda lakes and optimization of the enzyme production. Results A new potent alkaline protease producing halotolerant alkaliphilic isolate NPST-AK15 was isolated from hyper saline soda lakes, which affiliated to Bacillus sp. based on 16S rRNA gene analysis. Organic nitrogen supported enzyme production showing maximum yield using yeast extract, and as a carbon source, fructose gave maximum protease production. NPST-AK15 can grow over a broad range of NaCl concentrations (0-20%), showing maximal growth and enzyme production at 0-5%, indicated the halotolerant nature of this bacterium. Ba and Ca enhanced enzyme production by 1.6 and 1.3 fold respectively. The optimum temperature and pH for both enzyme production and cell growth were at 40°C and pH 11, respectively. Alkaline protease secretion was coherent with the growth pattern, started at beginning of the exponential phase and reached maximal in mid stationary phase (36 h). Conclusions A new halotolerant alkaliphilic alkaline protease producing Bacillus sp. NPST-AK15 was isolated from soda lakes. Optimization of various fermentation parameters resulted in an increase of enzyme yield by 22.8 fold, indicating the significance of optimization of the fermentation parameters to obtain commercial yield of the enzyme. NPST-AK15 and its extracellular alkaline protease with salt tolerance signify their potential applicability in the laundry industry and other applications.


Subject(s)
Endopeptidases/metabolism , Bacillus/enzymology , Bacterial Proteins/metabolism , Temperature , Bacillus/isolation & purification , Sodium Chloride , Lakes , Alkalies , Salt Tolerance , Fermentation , Hydrogen-Ion Concentration
16.
Electron. j. biotechnol ; 17(2): 55-64, Mar. 2014. ilus, graf, tab
Article in English | LILACS | ID: lil-714273

ABSTRACT

Background Cyclodextrin glucanotransferase (CGTase) from Amphibacillus sp. NPST-10 was covalently immobilized onto amino-functionalized magnetic double mesoporous core-shell silica nanospheres (mag@d-SiO2@m-SiO2-NH2), and the properties of the immobilized enzyme were investigated. The synthesis process of the nanospheres included preparing core magnetic magnetite (Fe3O4) nanoparticles, coating the Fe3O4 with a dense silica layer, followed by further coating with functionalized or non-functionalized mesoporous silica shell. The structure of the synthesized nanospheres was characterized using TEM, XRD, and FT-IR analyses. CGTase was immobilized onto the functionalized and non-functionalized nanospheres by covalent attachment and physical adsorption. Results The results indicated that the enzyme immobilization by covalent attachment onto the activated mag@d-SiO2@m-SiO2-NH2, prepared using anionic surfactant, showed highest immobilization yield (98.1%), loading efficiency (96.2%), and loading capacity 58 µg protein [CGTase]/mg [nanoparticles]) which were among the highest yields reported so far for CGTase. Compared with the free enzyme, the immobilized CGTase demonstrated a shift in the optimal temperature from 50°C to 50-55°C, and showed a significant enhancement in the enzyme thermal stability. The optimum pH values for the activity of the free and immobilized CGTase were pH 8 and pH 8.5, respectively, and there was a significant improvement in pH stability of the immobilized enzyme. Moreover, the immobilized CGTase exhibited good operational stability, retaining 56% of the initial activity after reutilizations of ten successive cycles. Conclusion The enhancement of CGTase properties upon immobilization suggested that the applied nano-structured carriers and immobilization protocol are promising approach for industrial bioprocess for production of cyclodextrins using immobilized CGTase.


Subject(s)
Bacillaceae/enzymology , Enzymes, Immobilized , Glucosyltransferases/isolation & purification , Glucosyltransferases/metabolism , Solvents/isolation & purification , Temperature , Porosity , Silicon Dioxide , Cyclodextrins , Nanospheres , Glucosyltransferases/biosynthesis , Hydrogen-Ion Concentration
17.
Electron. j. biotechnol ; 16(6): 3-3, Nov. 2013. ilus, tab
Article in English | LILACS | ID: lil-696544

ABSTRACT

Background: Cyclodextrin glucanotransferase (CGTase) is one of the most industrially important enzymes used in the commercial production of cyclodextrins (CDs). Alkaliphilic bacteria have attracted much interest in the last few decades because of their ability to produce extracellular enzymes that are active and stable at high pH values. Here, we report the isolation of a new CGTase from alkaliphilic bacteria collected from Egyptian soda lakes and describe the purification and biochemical characterization of this CGTase. Results: Screening for CGTase-producing alkaliphilic bacteria from sediment and water samples collected from Egyptian soda lakes located in the Wadi Natrun valley resulted in the isolation of a potent CGTase-producing alkaliphilic bacterial strain, designated NRC-WN. Strain NRC-WN was belonging to genus Amplibacullus by 16S rDNA sequence analysis (similarity: ca. 98%). Among the tested nitrogen and carbon sources, peptone (0.15%, w/v) and soluble starch (0.4%, w/v) allowed maximal CGTase production by Amphibacillus sp. NRC-WN. CGTase was successfully purified from Amphibacillus sp. NRC-WN up to 159.7-fold through a combination of starch adsorption and anion exchange chromatography, resulting in a yield of 84.7%. SDS-PAGE analysis indicated that the enzyme was purified to homogeneity and revealed an estimated molecular mass of 36 kDa, which makes it one of the smallest CGTases reported in the literature. The purified enzyme exhibited maximum activity at 50ºC and was stable up to 70ºC, retaining 93% of its initial activity after treatment for 1 hr. Furthermore, Ca2+ ions (10 mM) significantly enhanced the thermal stability of the CGTase. The purified enzyme was active and stable over a wide pH range, showing maximal activity at pH 9.5. The enzyme was significantly stimulated by Zn2+, Ca2+ and Co2+ but was completely inhibited in the presence of Fe3+ and mercaptoethanol. The Km and Vmax values of the purified CGTase were estimated to be 0.0434 mg/ml and 3,333.3 mg β-CD/ml/min, respectively. β-CD was the predominant product of starch degradation by the Amphibacillus sp. NRC-WN CGTase, followed by α-and γ-CDs. Conclusions: A new low molecular mass alkaline CGTase was purified from a newly identified alkaliphilic Amphibacillus sp. NRC-WN isolate from the Egyptian soda lakes. The enzyme showed promising thermal and pH stability and a high affinity toward starch as a natural substrate.


Subject(s)
Bacillaceae/enzymology , Glucosyltransferases/biosynthesis , Temperature , Bacillaceae/isolation & purification , Enzyme Stability , Kinetics , Lakes/microbiology , Chromatography, Ion Exchange , Adsorption , Glucosyltransferases/metabolism , Hydrogen-Ion Concentration , Molecular Weight
18.
Electron. j. biotechnol ; 16(6): 10-10, Nov. 2013. ilus, tab
Article in English | LILACS | ID: lil-696551

ABSTRACT

Background: Cyclodextrin glycosyltransferase (CGTase) from Amphibacillus sp. NPST-10 was successfully covalently immobilized on aminopropyl-functionalized silica coated superparamagnetic nanoparticles; and the properties of immobilized enzyme were investigated. The synthesis process included preparing of core magnetic magnetite (Fe3O4) nanoparticles using solvothermal synthesis; followed by coating of Fe3O4 nanoparticles with dense amino-functionalized silica (NH2-SiO2) layer using in situ functionalization method. The structure of synthesized Fe3O4@NH2-SiO2 nanoparticles was characterized using TEM, XRD, and FT-IR analysis. Fe3O4@NH2-SiO2 nanoparticles were further activated by gluteraaldehyde as bifunctional cross linker, and the activated nanoparticles were used for CGTase immobilization by covalent attachment. Results: Magnetite nanoparticles was successfully synthesized and coated with and amino functionalized silica layer (Fe3O4/NH2-SiO2), with particle size of 50-70 nm. The silica coated magnetite nanoparticles showed with saturation magnetization of 65 emug-1, and can be quickly recovered from the bulk solution using an external magnet within 10 sec. The activated support was effective for CGTase immobilization, which was confirmed by comparison of FT-IR spectra of free and immobilized enzyme. The applied approach for support preparation, activation, and optimization of immobilization conditions, led to high yields of CGTase immobilization (92.3%), activity recovery (73%), and loading efficiency (95.2%); which is one of the highest so far reported for CGTase. Immobilized enzyme showed shift in the optimal temperature from 50 to 55ºC, and significant enhancement in the thermal stability compared with free enzyme. The optimum pH for enzyme activity was pH 8 and pH 7.5 for free and immobilized CGTase, respectively, with slight improvement of pH stability of immobilized enzyme. Furthermore, kinetic studies revealed that immobilized CGTase had higher affinity toward substrate; with k m values of 1.18 ± 0.05 mg/ml and 1.75 ± 0.07 mg/ml for immobilized and free CGTase, respectively. Immobilized CGTase retained 87% and 67 of its initial activity after 5 and 10 repeated batches reaction, indicating that immobilized CGTase on Fe3O4/NH2-SiO2 had good durability and magnetic recovery. Conclusion: The improvement in kinetic and stability parameters of immobilized CGTase makes the proposed method a suitable candidate for industrial applications of CGTase. To best of our knowledge, this is the first report about CGTase immobilization on silica coated magnetite nanoparticles.


Subject(s)
Enzymes, Immobilized/metabolism , Enzymes, Immobilized/chemistry , Magnetite Nanoparticles/chemistry , Glucosyltransferases/metabolism , Glucosyltransferases/chemistry , Spectrophotometry, Infrared , Temperature , Bacillaceae/enzymology , Kinetics , Silicon Dioxide , Cyclodextrins , Culture Techniques , Glucosyltransferases/isolation & purification , Glucosyltransferases/biosynthesis , Hydrogen-Ion Concentration
19.
Int J Mol Sci ; 13(8): 10505-10522, 2012.
Article in English | MEDLINE | ID: mdl-22949876

ABSTRACT

Screening for cyclodextrin glycosyltransferase (CGTase)-producing alkaliphilic bacteria from samples collected from hyper saline soda lakes (Wadi Natrun Valley, Egypt), resulted in isolation of potent CGTase producing alkaliphilic bacterium, termed NPST-10. 16S rDNA sequence analysis identified the isolate as Amphibacillus sp. CGTase was purified to homogeneity up to 22.1 fold by starch adsorption and anion exchange chromatography with a yield of 44.7%. The purified enzyme was a monomeric protein with an estimated molecular weight of 92 kDa using SDS-PAGE. Catalytic activities of the enzyme were found to be 88.8 U mg(-1) protein, 20.0 U mg(-1) protein and 11.0 U mg(-1) protein for cyclization, coupling and hydrolytic activities, respectively. The enzyme was stable over a wide pH range from pH 5.0 to 11.0, with a maximal activity at pH 8.0. CGTase exhibited activity over a wide temperature range from 45 °C to 70 °C, with maximal activity at 50 °C and was stable at 30 °C to 55 °C for at least 1 h. Thermal stability of the purified enzyme could be significantly improved in the presence of CaCl(2). K(m) and V(max) values were estimated using soluble starch as a substrate to be 1.7 ± 0.15 mg/mL and 100 ± 2.0 µmol/min, respectively. CGTase was significantly inhibited in the presence of Co(2+), Zn(2+), Cu(2+), Hg(2+), Ba(2+), Cd(2+), and 2-mercaptoethanol. To the best of our knowledge, this is the first report of CGTase production by Amphibacillus sp. The achieved high conversion of insoluble raw corn starch into cyclodextrins (67.2%) with production of mainly ß-CD (86.4%), makes Amphibacillus sp. NPST-10 desirable for the cyclodextrin production industry.


Subject(s)
Bacillaceae/enzymology , Cyclodextrins/metabolism , Glucosyltransferases/isolation & purification , Glucosyltransferases/metabolism , Electrophoresis, Polyacrylamide Gel , Enzyme Stability , Geologic Sediments/chemistry , Glucosyltransferases/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Models, Molecular , Molecular Structure , Molecular Weight , Substrate Specificity , Temperature , Water/chemistry
20.
Extremophiles ; 16(4): 659-68, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22669507

ABSTRACT

The present study was aimed to localize and characterize hexavalent chromate [Cr(VI)] reductase activity of the extreme alkaliphilic Amphibacillus sp. KSUCr3 (optimal growth pH 10.5). The resting cells were able to reduce about 62 % of the toxic heavy metal Cr(VI) at initial concentration of 200 µM within 30 min. Cell permeabilization resulted in decrease of Cr(VI) reduction in comparison to untreated cells. Enzymatic assays of different sub-cellular fractions of Amphibacillus sp. KSUCr3 demonstrated that the Cr(VI) reductase was mainly associated with the membranous fraction and expressed constitutively. In vitro studies of the crude enzyme indicated that copper ion was essential for Cr(VI) reductase activity. In addition, Ca²âº and Mn²âº slightly stimulated the chromate reductase activity. Glucose was the best external electron donor, showing enhancement of the enzyme activity by about 3.5-fold. The K (m) and V (max) determined for chromate reductase activity in the membranous fraction were 23.8 µM Cr(VI) and 72 µmol/min/mg of protein, respectively. Cr(VI) reductase activity was maximum at 40 °C and pH 7.0 and it was significantly inhibited in the presence of disulfide reducers (2-mercaptoethanol), ion chelating agent (EDTA), and respiratory inhibitors (CN and Azide). Complete reduction of 100 and 200 µM of Cr(VI) by membrane associated enzyme were observed within 40 and 180 min, respectively. However, it should be noted that biochemical characterization has been done with crude enzyme only, and that final conclusion can only be drawn with the purified enzyme.


Subject(s)
Bacillaceae/enzymology , Bacterial Proteins/metabolism , Chromates/metabolism , Copper/metabolism , Oxidoreductases/metabolism , Glucose/metabolism , Hydrogen-Ion Concentration , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...