Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 7(8)2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30071585

ABSTRACT

Indigenous and non-commercial fruits can be an important source of antioxidant polyphenols; however, the identity and content of polyphenols from non-commercial fruits are often poorly described. The study aimed to extract, identify, and quantify polyphenols from the skin of the indigenous Africa fruit Ximenia caffra, using solvent extraction. Three solvents (hexane, acetone, and 70% v/v ethanol) over three extraction times (30, 60 and 120 min) were used in a 3² full factorial experimental design to determine effects on polyphenol recovery, and individual polyphenolics were characterised using liquid chromatography high-resolution mass spectrometry (LC-HRMS). Ethanol was the most effective extraction solvent, and extracts had high levels of total phenolics and flavonoids (65 mg gallic and 40 mg catechin equivalents per gram dry sample respectively), and high antioxidant activity (18.2 mg mL-1 ascorbic acid equivalents). LC-HRMS positively identified 16 compounds, of which 14 were flavonoids including flavonoid glycosides, and indicated that concentrations of some flavonoids decreased for extraction times beyond 60 min. It was concluded that the fruit of Ximenia caffra is rich in natural polyphenolic antioxidants; the present work identified and quantified a number of these, while also establishing suitable solvent extraction conditions for the recovery of these potentially high-value compounds.

2.
Anal Chem ; 89(24): 13305-13312, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29135226

ABSTRACT

We illustrate that single-cell Raman microspectroscopy, coupled with deuterium isotope probing (Raman-DIP), provides a culture-independent and nondestructive approach to probe metabolic pathways of carbon substrates at the single-cell level. We found a distinguishable C-D vibration band at 2070-2300 cm-1 in single-cell Raman spectra (SCRS) when Escherichia coli used deuterated glucose and Pseudomonas sp. used deuterated naphthalene as sole carbon sources. The intensity of the C-D band is proportional to the extent of deuteration in the carbon source, and as little as 5% deuteration can be distinguished by analysis of SCRS. It suggests that Raman-DIP could be used to semiquantitatively and sensitively indicate the metabolism of deuterated carbon source in microbes. A lower lipid conversion rate of deuterated naphthalene compared to that of deuterated glucose was observed, presumably owing to different anabolic pathways and membrane alteration. Apart from the C-D band shift from C-H, SCRS also reveal several isotopic shifts of the phenylalanine band, of which the positions correlate well with a computational model. A reduction in phenylalanine deuteration in Pseudomonas sp. compared to that in E. coli is due to the dilution effect of different pathways of phenylalanine biosynthesis in Pseudomonas sp. Collectively, we demonstrate that Raman-DIP can not only indicate metabolic activity using deuterated carbon sources but also reveal different metabolic pathways by analyzing SCRS. By harnessing such low-cost and versatile deuterated substrates, Raman-DIP has the potential to probe a wide range of metabolic pathways and functions at the single-cell level.


Subject(s)
Deuterium/chemistry , Escherichia coli/metabolism , Pseudomonas/metabolism , Single-Cell Analysis , Glucose/metabolism , Naphthalenes/metabolism , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...