Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Cureus ; 16(3): e57345, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38690498

ABSTRACT

BACKGROUND: Acute pulmonary embolism (APE) poses a significant risk to patient health, with treatment options varying in efficacy and safety. Ultrasound-facilitated catheter-directed thrombolysis (USCDT) has emerged as a potential alternative to conventional catheter-directed thrombolysis (CDT) for patients with intermediate to high-risk APE. This study aimed to compare the efficacy and safety of USCDT versus conventional CDT in patients with intermediate to high-risk APE. METHODS: This observational retrospective study was conducted at the Armed Forces Hospital, Al-Hada, Taif, the Kingdom of Saudi Arabia (KSA), on 135 patients diagnosed with APE and treated with either USCDT or CDT (58 underwent CDT, while 77 underwent USCDT). The primary efficacy outcome was the change in the right ventricle to the left ventricle (RV/LV) diameter ratio. Secondary outcomes included changes in pulmonary artery systolic pressure and the Miller angiographic obstruction index score. Safety outcomes focused on major bleeding events. RESULTS: Both USCDT and CDT significantly reduced RV/LV diameter ratio (from 1.35 ± 0.14 to 1.05 ± 0.17, P < 0.001) and systolic pulmonary artery pressure (SPAP) (from 55 ± 7 mmHg to 38 ± 7 mmHg, P < 0.001) at 48- and 12-hours post-procedure, respectively, with no significant differences between treatments. However, USCDT was associated with a significantly lower rate of major bleeding events compared to CDT (0% vs. 3.4%, P = 0.008). Multivariate logistic regression analysis revealed that USCDT was associated with a 71.9% risk reduction of bleeding (OR = 0.281, 95% CI = 0.126 - 0.627, P = 0.002). CONCLUSIONS: USCDT is a safe and effective alternative to CDT for the treatment of intermediate to high-risk APE, as it significantly reduces the risk of major bleeding.

3.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 5193-5205, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38252300

ABSTRACT

Perturbations produced by ionizing radiation on intestinal tissue are considered one of highly drastic challenges in radiotherapy. Animals were randomized into five groups. The first group was allocated as control, and the second was subjected to whole body γ-irradiation (10 Gy). The third was administered HA NP (17.6 mg/kg/day; i.p.) and then irradiated. The fourth one received MitoQ (2 mg/kg/day; i.p.) and then irradiated. The last group received MitoQ/HA NP (2 mg/kg/day; i.p.) for 5 days prior to irradiation. Mice were sacrificed a week post-γ-irradiation for evaluation. MitoQ/HA NP ameliorated mitochondrial oxidative stress as indicated by rising (TAC) and glutathione peroxidase and decreasing malondialdehyde, showing its distinguished antioxidant yield. That impacted the attenuation of apoptosis, which was revealed by the restoration of the anti-apoptotic marker and lessening proapoptotic caspase-3. Inflammatory parameters dwindled via treatment with MitoQ/HA NP. Moreover, this new NP exerts its therapeutic action through a distinguished radioprotective pathway (Hmgb1/TLR-4.) Subsequently, these antioxidants and their nanoparticles conferred protection to intestinal tissue as manifested by histopathological examination. These findings would be associated with its eminent antioxidant potential through high mitochondria targeting, enhanced cellular uptake, and ROS scavenging. This research underlines MitoQ/HA NP as a new treatment for the modulation of intestinal damage caused by radiotherapy modalities.


Subject(s)
Antioxidants , Apoptosis , Gamma Rays , Hyaluronic Acid , Organophosphorus Compounds , Oxidative Stress , Radiation-Protective Agents , Ubiquinone , Animals , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Apoptosis/drug effects , Apoptosis/radiation effects , Gamma Rays/adverse effects , Mice , Organophosphorus Compounds/pharmacology , Male , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/therapeutic use , Antioxidants/pharmacology , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Hyaluronic Acid/pharmacology , Radiation Injuries, Experimental/prevention & control , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/drug therapy , Radiation Injuries, Experimental/metabolism , Nanoparticles , Intestines/drug effects , Intestines/radiation effects , Intestines/pathology , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/radiation effects
4.
Life Sci ; 331: 122063, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37666390

ABSTRACT

Despite the clinical advances in cancer treatment, the high mortality rate is still a great challenge, requiring much effort to find new and efficient cancer therapies. AIMS: The present evidence investigated the potential antiproliferative impact of the mitochondrial-targeted antioxidant, Mitoquinol (MitoQ), on a mouse model of Ehrlich ascites carcinoma (EAC). MAIN METHODS: Mice-bearing tumors were administered two doses of MitoQ (0.3 mg & 0.5 mg/kg; i.p daily) or doxorubicin (2 mg/kg; i.p daily) for 20 days. KEY FINDINGS: EAC mice revealed exacerbated mitochondrial reactive oxygen species (mtROS) and impaired mitochondrial membrane potential (△Ψm). Dysfunctional mitophagy was observed in EAC mice, along with boosting aerobic glycolysis. In addition, tumor cells exhibited higher proliferation rates, thereby stimulating cell cycle, invasion, and angiogenesis biomarkers together with suppressing proapoptotic proteins, events that might be correlated with activation of NF-κB signaling. The administration of MitoQ combated tumor cell survival and dissemination in EAC mice as evidenced by reducing tumor volumes and weights and increasing the number of necrotic areas in histopathological assessment. MitoQ also repressed tumor cell cycle, invasion, and angiogenesis via preventing cyclin D1 mRNA, MMP-1, and CD34 levels as well as VEGF protein expression. These observations were associated with the abrogation of mtROS overproduction and enhancement of the mitophagy proteins, PINK1/Parkin levels, followed by inhibition of NADH dehydrogenase. Notably, NF-κB signaling was modulated. SIGNIFICANCE: This study suggests that MitoQ combated tumor cell survival and progression in EAC mice by maintaining mtROS and restoring mitophagy, thereby attenuation of NF-κB activation.


Subject(s)
Carcinoma , NF-kappa B , Animals , Mice , Ascites , Mitophagy , Oxidative Stress
5.
Life Sci ; 328: 121895, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37385372

ABSTRACT

AIMS: Mitochondrial perturbations are the major culprit of the inflammatory response during the initial phase of cerebral ischemia. The present study explored the neuroprotective effect of the mitochondrial-targeted antioxidant, Mitoquinol (MitoQ), against hippocampal neuronal loss in an experimental model of brain ischemia/reperfusion (I/R) injury. MAIN METHODS: Rats were subjected to common carotid artery occlusion for 45 min, followed by reperfusion for 24 h. MitoQ (2 mg/kg; i.p daily) was administered for 7 successive days prior to the induction of brain ischemia. KEY FINDINGS: I/R rats exhibited hippocampal damage evidenced by aggravated mitochondrial oxidative stress, thereby enhancing mtROS and oxidized mtDNA, together with inhibiting mtGSH. Mitochondrial biogenesis and function were also affected, as reflected by the reduction of PGC-1α, TFAM, and NRF-1 levels, as well as loss of mitochondrial membrane potential (△Ψm (. These changes were associated with neuroinflammation, apoptosis, impairment of cognitive function as well as hippocampal neurodegenerative changes in histopathological examination. Notably, SIRT6 was suppressed. Pretreatment with MitoQ markedly potentiated SIRT6, modulated mitochondrial oxidative status and restored mitochondrial biogenesis and function. In addition, MitoQ alleviated the inflammatory mediators, TNF-α, IL-18, and IL-1ß and dampened GFAB immunoexpression along with downregulation of cleaved caspase-3 expression. Reversal of hippocampal function by MitoQ was accompanied by improved cognitive function and hippocampal morphological aberrations. SIGNIFICANCE: This study suggests that MitoQ preserved rats' hippocampi from I/R insults via maintenance of mitochondrial redox status, biogenesis, and activity along with mitigation of neuroinflammation and apoptosis, thereby regulating SIRT6.


Subject(s)
Brain Ischemia , Reperfusion Injury , Sirtuins , Rats , Animals , Oxidative Stress , Neuroinflammatory Diseases , Brain Ischemia/pathology , Mitochondria/metabolism , Cerebral Infarction/pathology , Reperfusion Injury/metabolism , Hippocampus/metabolism , Sirtuins/metabolism
6.
Life Sci ; 232: 116655, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31306659

ABSTRACT

AIMS: The deleterious effect of gamma radiation on testicular tissue is a challenging problem in nuclear medicine. This study investigated the potential radioprotective effect of mitoquinol (MitoQ), a mitochondria-targeted antioxidant, against testicular damage induced by gamma irradiation in rats. MAIN METHODS: Rats were allocated into four groups. The first group served as the control, the second group received MitoQ (2 mg / kg / day; i.p.) for seven days, the third group was exposed to gamma radiation (5 Gy as a single dose) and the last group received MitoQ prior to irradiation. Rats were sacrificed. Then, sperm analyses and the serum testosterone were determined. Moreover, evaluation of mitochondrial oxidative stress parameters (SOD, GSH and GPx) as well as apoptosis indicators (cytochrome-c, Bax, Bcl-2 and caspase-3) was performed. Additionally, analysis of steroidogensis biomarkers (StAR, 3ß-HSD and 17ß-HSD) and histopathological investigations were carried out. KEY FINDINGS: MitoQ replenished mitochondrial SOD, GPx and GSH indicating its strong antioxidant effect in addition to its energy preservation manifested by the elevated ATP. MitoQ inhibited the intrinsic apoptosis via diminution of Bax, cytochrome-c and caspase-3 and alleviation of Bcl-2. This antioxidant conferred protection to steroidogenesis as verified by the increase in testosterone and the up-regulation of StAR, 3ß-HSD and 17ß-HSD expression; these effects might be correlated with its antioxidant/anti-apoptotic potential. Histopathological and sperm analyses corroborated the biochemical findings. SIGNIFICANCE: This study identifies MitoQ as a novel agent for the management of testicular toxicity induced by gamma irradiation.


Subject(s)
Gamma Rays , Mitochondria/drug effects , Organophosphorus Compounds/pharmacology , Steroids/biosynthesis , Testis/drug effects , Testis/radiation effects , Ubiquinone/pharmacology , Adenosine Triphosphate/metabolism , Animals , Apoptosis/drug effects , Body Weight/drug effects , Male , Mitochondria/metabolism , Organ Size/drug effects , Oxidative Stress/drug effects , Rats , Rats, Wistar , Spermatogenesis/drug effects , Spermatogenesis/radiation effects , Testis/pathology , Whole-Body Irradiation
SELECTION OF CITATIONS
SEARCH DETAIL
...