Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 253(Pt 1): 126489, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37625740

ABSTRACT

Biodegradable polymers, biochars and metal organic frameworks (MOFs) have manifested as top prospects for elimination of harmful pollutants. In the current study, Ti-MOF was synthesized and decorated with TiO2 nanoparticles, then embedded into watermelon peel biochar and functionalized with chitosan hydrogel to produce Ti-MOF@TiO2@WMPB@CTH. Various instruments were employed to assure the effective production of the bionanocomposite. The HR-TEM and SEM studies referred to excellent surface porosity and homogeneity of Ti-MOF@TiO2@WMPB@CTH bionanocomposite, with 51.02-74.23 nm. Based on the BET analysis, the mesoporous structure has a significant surface area of 366.04 m2 g-1 and a considerable total pore volume of 11.38 × 10-2 cm3 g-1, with a mean pore size of 12.434 nm. Removal of doxorubicin (DOX) and hexavalent chromium (Cr(VI)) was examined under various experimentations. Pseudo-second order kinetic models in addition to Langmuir isotherm offered the best fitting. Thermodynamic experiments of the two contaminants demonstrated spontaneous and endothermic interactions. After five subsequent adsorption and desorption cycles, Ti-MOF@TiO2@WMPB@CTH bionanocomposite demonstrated an exceptional recyclability for the elimination of DOX and Cr(VI) ions, reaching 97.96 % and 95.28 %, respectively. Finally, the newly designed Ti-MOF@TiO2@WMPB@CTH bionanocomposite demonstrated a high removing efficiency of Cr(VI) ions and DOX from samples of real water.


Subject(s)
Chitosan , Water Pollutants, Chemical , Hydrogels , Chitosan/chemistry , Titanium/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Chromium/chemistry , Water/chemistry , Kinetics , Hydrogen-Ion Concentration
2.
RSC Adv ; 11(24): 14829-14843, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-35424003

ABSTRACT

A novel magnetic starch-crosslinked-magnetic ethylenediamine nanocomposite, NFe3O4Starch-Glu-NFe3O4ED, was synthesized via microwave irradiation. The characteristics of the assembled NFe3O4Starch-Glu-NFe3O4ED nanocomposite were evaluated via XRD, FT-IR, TGA, BET, SEM and HR-TEM analyses. Its particle size was confirmed to be in the range 11.25-17.16 nm. The effectiveness of the designed nanocomposite for the removal of Cr(vi) ions was explored using the batch adsorption technique. Equilibrium results proved that the adsorptive removal of the target metal ions from aqueous solution was highly dependent on the optimized experimental parameters. The maximum adsorptive removal percentage values (%R) of Cr(vi) ions on NFe3O4Starch-Glu-NFe3O4ED obtained at pH 2.0 were 85.27%, 91.90%, and 96.47% using 10.0, 25.0, and 50.0 mg L-1 Cr(vi), respectively, for an equilibrium time of 30 min. The adsorption process was found to be strongly influenced by the presence of interfering salts including NaCl, CaCl2, KCl, MgCl2, and NH4Cl. Kinetic studies were performed and it was found that the pseudo-second and Elovich models well fitted the experimental data with the possible suggested ion-pair interaction mechanism. Different isotherm models were employed to assess the adsorption equilibrium, which was revealed by fitting Langmuir, Temkin and Freundlich models. The maximum uptake capacity based on the Langmuir model was 210.741 mg g-1. The effect of temperature and thermodynamics confirmed that adsorption was spontaneous, feasible, and endothermic in nature. Finally, the validity and applicability of using the NFe3O4Starch-Glu-NFe3O4ED nanocomposite to remove Cr(vi) ions from real water matrices were confirmed in the range of 91.2-94.7 ± 2.2-3.7%.

SELECTION OF CITATIONS
SEARCH DETAIL
...