Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Model ; 29(9): 302, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37653273

ABSTRACT

CONTEXT: This study rigorously investigates three 3d transition metal carbide (TMC) structures via LDA and GGA approximations. It examines cohesive energy (Ecoh), Vickers hardness (Hv), mechanical stability, and electronic properties. Notably, most 3d TMCs exhibit higher cohesive energy than nitrides, and rs-TiC demonstrates a Vickers hardness of 25.66 GPa, outperforming its nitride counterpart. The study employs theoretical calculations to expedite research, revealing mechanical stability in CrC and MnC (GGA) and CrC (LDA in cc structure), while all 3d TMCs in rs and seven in zb structures show stability. Charge transfer and bonding analysis reveal enhanced covalency along the series, influenced by the interplay between p orbitals of carbon and d orbitals of the metal. Most 3d TMCs exhibit metallic properties, excluding zb-TiC and zb-FeC in all phases. An inverse correlation between elastic constant C44 and electronic states near the Fermi level (EF) emerges, guiding applications and design. This study efficiently uncovers 3d TMC properties, offering insights for applications and design. METHODS: We employed the Vienna ab initio Simulation software (VASP) to perform computations based on density functional theory (DFT). Our approach incorporated both the projector augmented wave (PAW) and PW91 general gradient approximation (GGA) methods within the local density approximation (LDA).

2.
Mater Sci Eng C Mater Biol Appl ; 73: 665-669, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28183658

ABSTRACT

The manganese doped zinc sulfide nanoparticles were synthesized by simple aqueous chemical reaction of manganese chloride, zinc acetate and thioacitamide in aqueous solution. Thioglycolic acid is used as capping agent for controlling the nanoparticle size. The main advantage of the ZnS:Mn nanoparticles of diameter ~2.73nm is that the sample is prepared by using non-toxic precursors in a cost effective and eco-friendly way. The structural, morphological and chemical composition of the nanoparticles have been investigated by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) with energy dispersion spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy. The nanosize of the prepared nanoparticles was elucidated by Scanning Electron Microscopy (SEM). FTIR result ensures that Thioglycolic acid is well bonded on the surface of ZnS:Mn NPs. The antifungal effects of Thioglycolic acid capped ZnS:Mn nanoparticles exhibited a potent antifungal activity against tested fungal strains, so deserving further investigation for clinical applications. The antifungal property of manganese doped zinc sulphide nanoparticles is attributed to the generation of reactive oxygen species due to the interaction of nanoparticles with water. Additionally, the presence of Zn and S in the zone of inhibition area leads to perturbation of fungi cell membranes resulting in growth inhibition.


Subject(s)
Antifungal Agents/pharmacology , Fungi/drug effects , Manganese/chemistry , Nanoparticles/chemistry , Semiconductors , Sulfides/chemistry , Thioglycolates/pharmacology , Zinc Compounds/chemistry , Microbial Sensitivity Tests , Nanoparticles/ultrastructure , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...