Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Comput Chem ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997238

ABSTRACT

Empirical rovibrational energy levels are presented for the third most abundant, asymmetric carbon dioxide isotopologue, 16O12C18O, based on a compiled dataset of experimental rovibrational transitions collected from the literature. The 52 literature sources utilized provide 19,438 measured lines with unique assignments in the wavenumber range of 2-12,676 cm-1. The MARVEL (Measured Active Rotational-Vibrational Energy Levels) protocol, which is built upon the theory of spectroscopic networks, validates the great majority of these transitions and outputs 8786 empirical rovibrational energy levels with an uncertainty estimation based on the experimental uncertainties of the transitions. Issues found in the literature data, such as misassignment of quantum numbers, typographical errors, and misidentifications, are fixed before including them in the final MARVEL dataset and analysis. Comparison of the empirical energy-level data of this study with those in the line lists CDSD-2019 and Ames-2021 shows good overall agreement, significantly better for CDSD-2019; some issues raised by these comparisons are discussed.

2.
J Comput Chem ; 45(13): 969-984, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38189163

ABSTRACT

A set of empirical rovibrational energy levels, obtained through the MARVEL (measured active rotational-vibrational energy levels) procedure, is presented for the 13 C 16 O 2 isotopologue of carbon dioxide. This procedure begins with the collection and analysis of experimental rovibrational transitions from the literature, allowing for a comprehensive review of the literature on the high-resolution spectroscopy of 13 C 16 O 2 , which is also presented. A total of 60 sources out of more than 750 checked provided 14,101 uniquely measured and assigned rovibrational transitions in the wavenumber range of 579-13,735 cm - 1 . This is followed by a weighted least-squares refinement yielding the energy levels of the states involved in the measured transitions. Altogether 6318 empirical rovibrational energies have been determined for 13 C 16 O 2 . Finally, estimates have been given for the uncertainties of the empirical energies, based on the experimental uncertainties of the transitions. The detailed analysis of the lines and the spectroscopic network built from them, as well as the uncertainty estimates, all serve to pinpoint possible errors in the experimental data, such as typos, misassignment of quantum numbers, and misidentifications. Errors found in the literature data were corrected before including them in the final MARVEL dataset and analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...