Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37629806

ABSTRACT

The rapid economic and industrial growth experienced in the Asian region has significantly increased waste production, particularly single-use plastic. This surge in waste poses a significant challenge for these countries' municipal solid waste management systems. Consequently, there is a pressing need for progressive and effective solutions to address the plastic waste issue. One promising initiative involves utilizing used plastic to produce components for asphalt pavement. The concept of plastic road technology has gained traction in Asia, with 32 countries displaying varying levels of interest, ranging from small-scale laboratory experiments to large-scale construction projects. However, as a relatively new technology, plastic road implementation requires continuous and comprehensive environmental and health risk assessments to ascertain its viability as a reliable green technology. This review paper presents the current findings and potential implementation of plastic-modified asphalt in Asian countries, with particular attention given to its environmental and human health impacts. While plastic asphalt roads hold promise in waste reduction, improved asphalt properties, and cost savings, it is imperative to thoroughly consider the environmental and health impacts, quality control measures, recycling limitations, and long-term performance of this road construction material. Further research and evaluation are needed to fully understand the viability and sustainability of plastic asphalt roads. This will enable a comprehensive assessment of its potential benefits and drawbacks, aiding in developing robust guidelines and standards for its implementation. By addressing these considerations, it will be possible to optimize the utilization of plastic waste in road construction and contribute to a greener and more sustainable future.

2.
Polymers (Basel) ; 15(8)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37112098

ABSTRACT

Conventional bitumen pavement is no longer suitable for handling increasing loads and weather variations, which cause road deterioration, Thus, the modification of bitumen has been suggested to counter this issue. This study provides a detailed assessment of various additives for modifying natural rubber-modified bitumen used in road construction. This work will focus on the use of additives with cup lump natural rubber (CLNR), which has recently started to gain attention among researchers, especially in rubber-producing countries such as Malaysia, Thailand and Indonesia. Furthermore, this paper aims to briefly review how the addition of additives or modifiers helps elevate the performance of bitumen by highlighting the significant properties of modified bitumen after the addition of modifiers. Moreover, the amount and method of application of each additive are discussed further to obtain the optimum value for future implementation. On the basis of past studies, this paper will review the utilisation of several types of additives, including polyphosphoric acid, Evotherm, mangosteen powder, trimethyl-quinoline and sulphur, and the application of xylene and toluene to ensure the homogeneity of the rubberised bitumen. Numerous studies were conducted to verify the performance of various types and compositions of additives, particularly in terms of physical and rheological properties. In general, additives enhance the properties of conventional bitumen. Future research should investigate CLNR because studies on its utilisation are limited.

3.
Environ Sci Pollut Res Int ; 29(24): 35557-35582, 2022 May.
Article in English | MEDLINE | ID: mdl-35243577

ABSTRACT

The daily utilization of a large amount of raw materials is causing a rapid depletion of natural resources. The growth of the human population is accompanied by higher activities in the agricultural and manufacturing sectors that resulted in a larger volume of waste materials being disposed of in landfills each year. Researchers are seeking ways to reduce the adverse impact of waste materials on the environment. One method for managing waste materials is using them as a substitute for natural materials, for example, as aggregate replacement in the construction of road pavements. This paper reviews the previous studies that explored the use of waste materials as aggregate replacement in stone matrix asphalt (SMA) mix and the performance of asphalt pavements constructed using these materials. A systematic literature search of four databases revealed that waste materials could be used as an alternative to the natural aggregates. Future studies on the SMA mixes should investigate using other waste materials that could improve mix design and enhance pavement performance. There is a need to establish a standard code of practice and train material technologists to use different types of waste in SMA pavement construction. In summary, it is essential to perform a life cycle cost analysis (LCCA) and life cycle assessment (LCA) to quantify the economic and environmental impacts of the different waste materials used as aggregates in SMA.


Subject(s)
Construction Materials , Hydrocarbons , Dust , Humans , Waste Products
4.
ScientificWorldJournal ; 2014: 968075, 2014.
Article in English | MEDLINE | ID: mdl-25050406

ABSTRACT

Fatigue cracking is an essential problem of asphalt concrete that contributes to pavement damage. Although stone matrix asphalt (SMA) has significantly provided resistance to rutting failure, its resistance to fatigue failure is yet to be fully addressed. The aim of this study is to evaluate the effect of crumb rubber modifier (CRM) on stiffness and fatigue properties of SMA mixtures at optimum binder content, using four different modification levels, namely, 6%, 8%, 10%, and 12% CRM by weight of the bitumen. The testing undertaken on the asphalt mix comprises the dynamic stiffness (indirect tensile test), dynamic creep (repeated load creep), and fatigue test (indirect tensile fatigue test) at temperature of 25°C. The indirect tensile fatigue test was conducted at three different stress levels (200, 300, and 400 kPa). Experimental results indicate that CRM-reinforced SMA mixtures exhibit significantly higher fatigue life compared to the mixtures without CRM. Further, higher correlation coefficient was obtained between the fatigue life and resilient modulus as compared to permanent strain; thus resilient modulus might be a more reliable indicator in evaluating the fatigue life of asphalt mixture.


Subject(s)
Construction Materials , Materials Testing , Stress, Mechanical
5.
ScientificWorldJournal ; 2014: 596364, 2014.
Article in English | MEDLINE | ID: mdl-24526911

ABSTRACT

Semi-flexible pavement surfacing is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement, which is subsequently grouted with appropriate cementitious materials. This study aims to investigate the compressive strength, flexural strength, and workability performance of cementitious grout. The grout mixtures are designed to achieve high strength and maintain flow properties in order to allow the cement slurries to infiltrate easily through unfilled compacted skeletons. A paired-sample t-test was carried out to find out whether water/cement ratio, SP percentages, and use of silica fume influence the cementitious grout performance. The findings showed that the replacement of 5% silica fume with an adequate amount of superplasticizer and water/cement ratio was beneficial in improving the properties of the cementitious grout.


Subject(s)
Compressive Strength , Construction Materials , Plasticizers/chemistry , Pliability , Polycarboxylate Cement/chemistry , Silicon Dioxide/chemistry , Construction Materials/standards
6.
ScientificWorldJournal ; 2014: 240786, 2014.
Article in English | MEDLINE | ID: mdl-24574875

ABSTRACT

The main objective of this paper is to investigate the relations of rubber size, rubber content, and binder content in determination of optimum binder content for open graded friction course (OGFC). Mix gradation type B as specified in Specification for Porous Asphalt produced by the Road Engineering Association of Malaysia (REAM) was used in this study. Marshall specimens were prepared with four different sizes of rubber, namely, 20 mesh size [0.841 mm], 40 mesh [0.42 mm], 80 mesh [0.177 mm], and 100 mesh [0.149 mm] with different concentrations of rubberised bitumen (4%, 8%, and 12%) and different percentages of binder content (4%-7%). The appropriate optimum binder content is then selected according to the results of the air voids, binder draindown, and abrasion loss test. Test results found that crumb rubber particle size can affect the optimum binder content for OGFC.


Subject(s)
Construction Industry/methods , Construction Materials , Friction , Hydrocarbons/chemistry , Rubber/chemistry , Transportation
SELECTION OF CITATIONS
SEARCH DETAIL
...