Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 156: 216-226, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36493665

ABSTRACT

This study investigated the performance of a passive biocover system at a Danish landfill. The overall methane oxidation efficiency of the system was assessed by comparing annual whole-site methane emissions before and after biocover installation. Annual whole-site methane emission predictions were calculated based on empirical models developed by a discrete number of tracer gas dispersion measurements. Moreover, a series of field campaigns and continuous flux measurements was carried out to evaluate the functionality of an individual biowindow. The results indicated that biocover system performance highly depended on barometric pressure variations. Under decreasing barometric pressure, estimated efficiency declined to 20%, while under increasing barometric pressure, nearly 100% oxidation was achieved. In-situ measurements on a specific biowindow showed a similar oxidation efficiency pattern in respect to barometric pressure changes despite the difference in spatial representation. Eddy covariance results revealed pronounced seasonal variability in the investigated biowindow, measuring higher methane fluxes during the cold period compared to the warm period. Results from the in-situ campaigns confirmed this finding, reporting a threefold increase in the biowindow's methane oxidation capacity from April to May. The annual average oxidation efficiency of the system was estimated to range between 51% and 65%, taking into consideration the impact of changes in barometric pressure and seasonal variability. This indicated an annual reduction in landfill's methane emissions between 24 and 35 tonnes. This study revealed the challenge facing current approaches in documenting accurately the performance of a passive biocover system, due to the short-term variability of oxidation efficiency, which is influenced by barometric pressure changes.


Subject(s)
Air Pollutants , Refuse Disposal , Refuse Disposal/methods , Air Pollutants/analysis , Environmental Monitoring/methods , Waste Disposal Facilities , Methane/analysis , Oxidation-Reduction , Denmark
2.
Waste Manag ; 150: 191-201, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35850004

ABSTRACT

An empirical model was developed and employed to estimate annual methane (CH4) emissions from two Danish landfills (Skellingsted and AV Miljø). The overall aim was to provide accurate annual CH4 emission estimates based on discrete emission field measurements and to address temporal variability caused by the impact of barometric pressure. Four non-linear regression models were developed, corresponding to the two landfills as well as to the western and eastern waste sections of AV Miljø. A comparison of model predictions with on-site eddy covariance fluxes showed that the models can accurately predict short-term emission variability. Predicted annual CH4 emissions for the Skellingsted and AV Miljø landfills were 69 ± 4 and 80 ± 4 tonnes, respectively, whereas for the western and eastern sections of the AV Miljø landfill, emissions were estimated at 63 ± 3 and 19 ± 1 tonnes, respectively. The results demonstrate that even though maximum emissions from Skellingsted were approximately threefold compared to AV Miljø, annual predicted CH4 emissions for Skellingsted were lower. This was because during the most frequently occurring pressure change events, emission rates were higher at AV Miljø in comparison to Skellingsted. An optimised sampling strategy was proposed, targeting the determination of an empirical emission model though the effective use of discrete field measurements. Analysis of annual emission estimates, based on the number of the tracer dispersion method (TDM) measurements, showed that both the number as well as the distribution of performed TDM measurements across the range of expected dP/dt influence the uncertainty.


Subject(s)
Air Pollutants , Refuse Disposal , Air Pollutants/analysis , Denmark , Environmental Monitoring/methods , Female , Humans , Methane/analysis , Pregnancy , Refuse Disposal/methods , Waste Disposal Facilities
3.
Waste Manag ; 138: 234-242, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34902685

ABSTRACT

This study investigates temporal variability on landfill methane (CH4) emissions from an old abandoned Danish landfill, caused by the rate of changes in barometric pressure. Two different emission quantification techniques, namely the dynamic tracer dispersion method (TDM) and the eddy covariance method (EC), were applied simultaneously and their results compared. The results showed a large spatial and temporal CH4 emission variation ranging from 0 to 100 kg h-1 and 0 to 12 µmol m-2 s-1, respectively. Landfill CH4 emissions dynamics were influenced by two environmental factors: the rate of change in barometric pressure (a strong negative correlation) and wind speed (a weak positive correlation). The relationship between CH4 emissions and the rate of change in barometric pressure was more complicated than a linear one, thereby making it difficult to estimate accurately annual CH4 emissions from a landfill based on discrete measurements. Furthermore, the results did not show any clear relationship between CH4 emissions and ambient temperature. Large seasonal variations were identified by the two methods, whereas no diurnal variability was observed throughout the investigated period. CH4 fluxes measured with the EC method were strongly correlated with emissions from the TDM method, even though no direct relationship could be established, due to the different sampling ranges of the two methods and the spatial heterogeneity of CH4 emissions.


Subject(s)
Air Pollutants , Refuse Disposal , Air Pollutants/analysis , Denmark , Methane/analysis , Waste Disposal Facilities
4.
Nat Commun ; 11(1): 5322, 2020 10 21.
Article in English | MEDLINE | ID: mdl-33087724

ABSTRACT

Forest production efficiency (FPE) metric describes how efficiently the assimilated carbon is partitioned into plants organs (biomass production, BP) or-more generally-for the production of organic matter (net primary production, NPP). We present a global analysis of the relationship of FPE to stand-age and climate, based on a large compilation of data on gross primary production and either BP or NPP. FPE is important for both forest production and atmospheric carbon dioxide uptake. We find that FPE increases with absolute latitude, precipitation and (all else equal) with temperature. Earlier findings-FPE declining with age-are also supported by this analysis. However, the temperature effect is opposite to what would be expected based on the short-term physiological response of respiration rates to temperature, implying a top-down regulation of carbon loss, perhaps reflecting the higher carbon costs of nutrient acquisition in colder climates. Current ecosystem models do not reproduce this phenomenon. They consistently predict lower FPE in warmer climates, and are therefore likely to overestimate carbon losses in a warming climate.

5.
Geophys Res Lett ; 46(10): 5284-5293, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31423034

ABSTRACT

Gross primary productivity (GPP), the gross uptake of carbon dioxide (CO2) by plant photosynthesis, is the primary driver of the land carbon sink, which presently removes around one quarter of the anthropogenic CO2 emissions each year. GPP, however, cannot be measured directly and the resulting uncertainty undermines our ability to project the magnitude of the future land carbon sink. Carbonyl sulfide (COS) has been proposed as an independent proxy for GPP as it diffuses into leaves in a fashion very similar to CO2, but in contrast to the latter is generally not emitted. Here we use concurrent ecosystem-scale flux measurements of CO2 and COS at four European biomes for a joint constraint on CO2 flux partitioning. The resulting GPP estimates generally agree with classical approaches relying exclusively on CO2 fluxes but indicate a systematic underestimation under low light conditions, demonstrating the importance of using multiple approaches for constraining present-day GPP.

6.
Sci Rep ; 7(1): 9632, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28851977

ABSTRACT

Concentrations of atmospheric carbon dioxide (CO2) have continued to increase whereas atmospheric deposition of sulphur and nitrogen has declined in Europe and the USA during recent decades. Using time series of flux observations from 23 forests distributed throughout Europe and the USA, and generalised mixed models, we found that forest-level net ecosystem production and gross primary production have increased by 1% annually from 1995 to 2011. Statistical models indicated that increasing atmospheric CO2 was the most important factor driving the increasing strength of carbon sinks in these forests. We also found that the reduction of sulphur deposition in Europe and the USA lead to higher recovery in ecosystem respiration than in gross primary production, thus limiting the increase of carbon sequestration. By contrast, trends in climate and nitrogen deposition did not significantly contribute to changing carbon fluxes during the studied period. Our findings support the hypothesis of a general CO2-fertilization effect on vegetation growth and suggest that, so far unknown, sulphur deposition plays a significant role in the carbon balance of forests in industrialized regions. Our results show the need to include the effects of changing atmospheric composition, beyond CO2, to assess future dynamics of carbon-climate feedbacks not currently considered in earth system/climate modelling.

7.
Environ Pollut ; 184: 201-10, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24060739

ABSTRACT

Tropospheric O3 is a strong oxidant that may affect vegetation and human health. Here we report on the O3 fluxes from a poplar plantation in Belgium during one year. Surprisingly, the winter and autumn O3 fluxes were of similar magnitude to ones observed during most of the peak vegetation development. Largest O3 uptakes were recorded at the beginning of the growing season in correspondence to a minimum stomatal uptake. Wind speed was the most important control and explained 44% of the variability in the nighttime O3 fluxes, suggesting that turbulent mixing and the mechanical destruction of O3 played a substantial role in the O3 fluxes. The stomatal O3 uptake accounted for a seasonal average of 59% of the total O3 uptake. Multiple regression and partial correlation analyses showed that net ecosystem exchange was not affected by the stomatal O3 uptake.


Subject(s)
Air Pollutants/analysis , Ozone/analysis , Populus/physiology , Agriculture , Air Pollution/statistics & numerical data , Belgium , Ecosystem , Environmental Monitoring , Forestry , Humans , Seasons , Wind
8.
Nature ; 404(6780): 861-5, 2000 Apr 20.
Article in English | MEDLINE | ID: mdl-10786790

ABSTRACT

Carbon exchange between the terrestrial biosphere and the atmosphere is one of the key processes that need to be assessed in the context of the Kyoto Protocol. Several studies suggest that the terrestrial biosphere is gaining carbon, but these estimates are obtained primarily by indirect methods, and the factors that control terrestrial carbon exchange, its magnitude and primary locations, are under debate. Here we present data of net ecosystem carbon exchange, collected between 1996 and 1998 from 15 European forests, which confirm that many European forest ecosystems act as carbon sinks. The annual carbon balances range from an uptake of 6.6 tonnes of carbon per hectare per year to a release of nearly 1 t C ha(-1) yr(-1), with a large variability between forests. The data show a significant increase of carbon uptake with decreasing latitude, whereas the gross primary production seems to be largely independent of latitude. Our observations indicate that, in general, ecosystem respiration determines net ecosystem carbon exchange. Also, for an accurate assessment of the carbon balance in a particular forest ecosystem, remote sensing of the normalized difference vegetation index or estimates based on forest inventories may not be sufficient.


Subject(s)
Carbon/metabolism , Trees , Atmosphere , Ecosystem , Europe , Oxygen/metabolism , Photosynthesis , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...