Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Chromosomes Cancer ; 62(3): 167-170, 2023 03.
Article in English | MEDLINE | ID: mdl-36379683

ABSTRACT

Myxoid liposarcoma (MLS) is molecularly characterized by fusions involving the DDIT3 gene in chromosome band 12q13; the fusion partner is FUS in band 16p11 in 90-95% of the cases and EWSR1 in band 22q12 in the remaining 5-10%. Hence, molecular studies, often fluorescence in situ hybridization (FISH) for DDIT3 rearrangement, are useful for establishing a correct diagnosis. Although all MLS tumors should have DDIT3 fusions, it is important to be aware of reasons for potential false-negative results. We here present a case of MLS that was negative for FISH for DDIT3, that showed an unexpected t(11;22) at G-banding, but that displayed a characteristic EWSR1::DDIT3 fusion at RNA-sequencing. The results suggest that neoplasia-associated fusions that, due to the transcriptional orientations of the two genes involved, cannot arise through only two double-strand breaks are more likely to be associated with negative FISH-findings and unexpected karyotypes.


Subject(s)
Liposarcoma, Myxoid , Liposarcoma , Humans , Adult , Liposarcoma, Myxoid/genetics , Liposarcoma, Myxoid/pathology , In Situ Hybridization, Fluorescence , Base Sequence , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Liposarcoma/genetics , Transcription Factor CHOP/genetics , RNA-Binding Protein EWS/genetics
2.
Sci Rep ; 6: 24554, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-27086931

ABSTRACT

Protein aggregation is the abnormal association of proteins into larger aggregate structures which tend to be insoluble. This occurs during normal physiological conditions and in response to age or stress-induced protein misfolding and denaturation. In this present study we have defined the range of proteins that aggregate in yeast cells during normal growth and after exposure to stress conditions including an oxidative stress (hydrogen peroxide), a heavy metal stress (arsenite) and an amino acid analogue (azetidine-2-carboxylic acid). Our data indicate that these three stress conditions, which work by distinct mechanisms, promote the aggregation of similar types of proteins probably by lowering the threshold of protein aggregation. The proteins that aggregate during physiological conditions and stress share several features; however, stress conditions shift the criteria for protein aggregation propensity. This suggests that the proteins in aggregates are intrinsically aggregation-prone, rather than being proteins which are affected in a stress-specific manner. We additionally identified significant overlaps between stress aggregating yeast proteins and proteins that aggregate during ageing in yeast and C. elegans. We suggest that similar mechanisms may apply in disease- and non-disease settings and that the factors and components that control protein aggregation may be evolutionary conserved.


Subject(s)
Fungal Proteins/metabolism , Oxidative Stress , Protein Aggregates , Aging/metabolism , Animals , Azetidinecarboxylic Acid/toxicity , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Yeasts/metabolism
3.
Mol Biol Evol ; 32(1): 153-61, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25349282

ABSTRACT

Exposing natural selection driving phenotypic and genotypic adaptive differentiation is an extraordinary challenge. Given that an organism's life stages are exposed to the same environmental variations, we reasoned that fitness components, such as the lag, rate, and efficiency of growth, directly reflecting performance in these life stages, should often be selected in concert. We therefore conjectured that correlations between fitness components over natural isolates, in a particular environmental context, would constitute a robust signal of recent selection. Critically, this test for selection requires fitness components to be determined by different genetic loci. To explore our conjecture, we exhaustively evaluated the lag, rate, and efficiency of asexual population growth of natural isolates of the model yeast Saccharomyces cerevisiae in a large variety of nitrogen-limited environments. Overall, fitness components were well correlated under nitrogen restriction. Yeast isolates were further crossed in all pairwise combinations and coinheritance of each fitness component and genetic markers were traced. Trait variations tended to map to quantitative trait loci (QTL) that were private to a single fitness component. We further traced QTLs down to single-nucleotide resolution and uncovered loss-of-function mutations in RIM15, PUT4, DAL1, and DAL4 as the genetic basis for nitrogen source use variations. Effects of SNPs were unique for a single fitness component, strongly arguing against pleiotropy between lag, rate, and efficiency of reproduction under nitrogen restriction. The strong correlations between life stage performances that cannot be explained by pleiotropy compellingly support adaptive differentiation of yeast nitrogen source use and suggest a generic approach for detecting selection.


Subject(s)
Nitrogen/metabolism , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Saccharomyces cerevisiae/growth & development , Amidohydrolases/genetics , Amidohydrolases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Evolution, Molecular , Genetic Fitness , Genotype , Membrane Proteins/genetics , Membrane Proteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Phenotype , Protein Kinases/genetics , Protein Kinases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Selection, Genetic
4.
Biol Open ; 3(10): 913-23, 2014 Sep 12.
Article in English | MEDLINE | ID: mdl-25217615

ABSTRACT

Protein aggregation is a widespread phenomenon in cells and associated with pathological conditions. Yet, little is known about the rules that govern protein aggregation in living cells. In this study, we biochemically isolated aggregation-prone proteins and used computational analyses to identify characteristics that are linked to physiological and arsenite-induced aggregation in living yeast cells. High protein abundance, extensive physical interactions, and certain structural properties are positively correlated with an increased aggregation propensity. The aggregated proteins have high translation rates and are substrates of ribosome-associated Hsp70 chaperones, indicating that they are susceptible for aggregation primarily during translation/folding. The aggregation-prone proteins are enriched for multiple chaperone interactions, thus high protein abundance is probably counterbalanced by molecular chaperones to allow soluble expression in vivo. Our data support the notion that arsenite interferes with chaperone activity and indicate that arsenite-aggregated proteins might engage in extensive aberrant protein-protein interactions. Expression of aggregation-prone proteins is down-regulated during arsenite stress, possibly to prevent their toxic accumulation. Several aggregation-prone yeast proteins have human homologues that are implicated in misfolding diseases, suggesting that similar mechanisms may apply in disease- and non-disease settings.

5.
Biomolecules ; 4(1): 252-67, 2014 Feb 25.
Article in English | MEDLINE | ID: mdl-24970215

ABSTRACT

While the toxicity of metals and metalloids, like arsenic, cadmium, mercury, lead and chromium, is undisputed, the underlying molecular mechanisms are not entirely clear. General consensus holds that proteins are the prime targets; heavy metals interfere with the physiological activity of specific, particularly susceptible proteins, either by forming a complex with functional side chain groups or by displacing essential metal ions in metalloproteins. Recent studies have revealed an additional mode of metal action targeted at proteins in a non-native state; certain heavy metals and metalloids have been found to inhibit the in vitro refolding of chemically denatured proteins, to interfere with protein folding in vivo and to cause aggregation of nascent proteins in living cells. Apparently, unfolded proteins with motile backbone and side chains are considerably more prone to engage in stable, pluridentate metal complexes than native proteins with their well-defined 3D structure. By interfering with the folding process, heavy metal ions and metalloids profoundly affect protein homeostasis and cell viability. This review describes how heavy metals impede protein folding and promote protein aggregation, how cells regulate quality control systems to protect themselves from metal toxicity and how metals might contribute to protein misfolding disorders.


Subject(s)
Metalloids/pharmacology , Metals, Heavy/pharmacology , Protein Aggregates/drug effects , Protein Folding/drug effects , Proteins/chemistry , Animals , Humans , Metalloids/toxicity , Metals, Heavy/toxicity , Proteins/metabolism
6.
Genetics ; 195(3): 1141-55, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24037264

ABSTRACT

A large fraction of human complex trait heritability is due to a high number of variants with small marginal effects and their interactions with genotype and environment. Such alleles are more easily studied in model organisms, where environment, genetic makeup, and allele frequencies can be controlled. Here, we examine the effect of natural genetic variation on heritable traits in a very large pool of baker's yeast from a multiparent 12th generation intercross. We selected four representative founder strains to produce the Saccharomyces Genome Resequencing Project (SGRP)-4X mapping population and sequenced 192 segregants to generate an accurate genetic map. Using these individuals, we mapped 25 loci linked to growth traits under heat stress, arsenite, and paraquat, the majority of which were best explained by a diverging phenotype caused by a single allele in one condition. By sequencing pooled DNA from millions of segregants grown under heat stress, we further identified 34 and 39 regions selected in haploid and diploid pools, respectively, with most of the selection against a single allele. While the most parsimonious model for the majority of loci mapped using either approach was the effect of an allele private to one founder, we could validate examples of pleiotropic effects and complex allelic series at a locus. SGRP-4X is a deeply characterized resource that provides a framework for powerful and high-resolution genetic analysis of yeast phenotypes and serves as a test bed for testing avenues to attack human complex traits.


Subject(s)
Chromosome Mapping/methods , Quantitative Trait Loci , Saccharomyces cerevisiae/genetics , Crosses, Genetic , Gene Frequency , Genes, Fungal , Genetic Association Studies , Genetic Variation , Heat-Shock Response/genetics , Humans , Models, Genetic , Phylogeny , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism
7.
J Cell Sci ; 125(Pt 21): 5073-83, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22946053

ABSTRACT

Several metals and metalloids profoundly affect biological systems, but their impact on the proteome and mechanisms of toxicity are not fully understood. Here, we demonstrate that arsenite causes protein aggregation in Saccharomyces cerevisiae. Various molecular chaperones were found to be associated with arsenite-induced aggregates indicating that this metalloid promotes protein misfolding. Using in vivo and in vitro assays, we show that proteins in the process of synthesis/folding are particularly sensitive to arsenite-induced aggregation, that arsenite interferes with protein folding by acting on unfolded polypeptides, and that arsenite directly inhibits chaperone activity. Thus, folding inhibition contributes to arsenite toxicity in two ways: by aggregate formation and by chaperone inhibition. Importantly, arsenite-induced protein aggregates can act as seeds committing other, labile proteins to misfold and aggregate. Our findings describe a novel mechanism of toxicity that may explain the suggested role of this metalloid in the etiology and pathogenesis of protein folding disorders associated with arsenic poisoning.


Subject(s)
Arsenites/pharmacology , Heat-Shock Proteins/metabolism , Protein Folding/drug effects , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Cytoplasmic Granules/metabolism , Heat-Shock Proteins/antagonists & inhibitors , Luciferases, Firefly/biosynthesis , Molecular Chaperones/antagonists & inhibitors , Molecular Chaperones/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Biosynthesis/drug effects , Recombinant Proteins/biosynthesis , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/antagonists & inhibitors
8.
Eukaryot Cell ; 9(10): 1635-47, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20675578

ABSTRACT

Despite a century of research and increasing environmental and human health concerns, the mechanistic basis of the toxicity of derivatives of the metalloid tellurium, Te, in particular the oxyanion tellurite, Te(IV), remains unsolved. Here, we provide an unbiased view of the mechanisms of tellurium metabolism in the yeast Saccharomyces cerevisiae by measuring deviations in Te-related traits of a complete collection of gene knockout mutants. Reduction of Te(IV) and intracellular accumulation as metallic tellurium strongly correlated with loss of cellular fitness, suggesting that Te(IV) reduction and toxicity are causally linked. The sulfate assimilation pathway upstream of Met17, in particular, the sulfite reductase and its cofactor siroheme, was shown to be central to tellurite toxicity and its reduction to elemental tellurium. Gene knockout mutants with altered Te(IV) tolerance also showed a similar deviation in tolerance to both selenite and, interestingly, selenomethionine, suggesting that the toxicity of these agents stems from a common mechanism. We also show that Te(IV) reduction and toxicity in yeast is partially mediated via a mitochondrial respiratory mechanism that does not encompass the generation of substantial oxidative stress. The results reported here represent a robust base from which to attack the mechanistic details of Te(IV) toxicity and reduction in a eukaryotic organism.


Subject(s)
Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Sulfates/metabolism , Tellurium/metabolism , Tellurium/toxicity , Drug Resistance, Fungal , Gene Deletion , Oxidation-Reduction , Oxidative Stress , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Selenomethionine/pharmacology , Sodium Selenite/pharmacology , Tellurium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...