Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 60(15): 11394-11400, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34279920

ABSTRACT

Magnesium silicide (Mg2Si) is a promising eco-friendly thermoelectric material, which has been extensively studied in recent times. However, its phase behavior at high pressures and temperatures remains unclear. To this end, in this study, in situ X-ray diffraction analysis was conducted at high pressures ranging from 0 to 11.3 GPa and high temperatures ranging from 296 to 1524 K, followed by quenching. The antifluorite-phase Mg2Si decomposed to Mg9Si5 and Mg at pressures above 3 GPa and temperatures above 970 K. The antifluorite-phase Mg2Si underwent a structural phase transition to yield a high-pressure room-temperature (HPRT) phase at pressures above 10.5 GPa and at room temperature. This HPRT phase also decomposed to Mg9Si5 and Mg when heated at ∼11 GPa. When 5Mg2Si decomposed to Mg9Si5 and Mg, the volume reduced by ∼6%. Mg9Si5 synthesized at high pressures and high temperatures was quenchable under ambient conditions. Thermoelectric property measurements of Mg9Si5 at temperatures ranging from 10 to 390 K revealed that it was a p-type semiconductor having a dimensionless thermoelectric figure of merit (ZT) of 3.4 × 10-4 at 283 K.

2.
Sci Rep ; 7(1): 16785, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29196734

ABSTRACT

K3Cu3AlO2(SO4)4 is a highly one-dimensional spin-1/2 inequilateral diamond-chain antiferromagnet. Spinon continuum and spin-singlet dimer excitations are observed in the inelastic neutron scattering spectra, which is in excellent agreement with a theoretical prediction: a dimer-monomer composite structure, where the dimer is caused by strong antiferromagnetic (AFM) coupling and the monomer forms an almost isolated quantum AFM chain controlling low-energy excitations. Moreover, muon spin rotation/relaxation spectroscopy shows no long-range ordering down to 90 mK, which is roughly three orders of magnitude lower than the exchange interaction of the quantum AFM chain. K3Cu3AlO2(SO4)4 is, thus, regarded as a compound that exhibits a Tomonaga-Luttinger spin liquid behavior at low temperatures close to the ground state.

3.
Nat Commun ; 7: 11788, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27273207

ABSTRACT

Weyl fermions that emerge at band crossings in momentum space caused by the spin-orbit interaction act as magnetic monopoles of the Berry curvature and contribute to a variety of novel transport phenomena such as anomalous Hall effect and magnetoresistance. However, their roles in other physical properties remain mostly unexplored. Here, we provide evidence by neutron Brillouin scattering that the spin dynamics of the metallic ferromagnet SrRuO3 in the very low energy range of milli-electron volts is closely relevant to Weyl fermions near Fermi energy. Although the observed spin wave dispersion is well described by the quadratic momentum dependence, the temperature dependence of the spin wave gap shows a nonmonotonous behaviour, which can be related to that of the anomalous Hall conductivity. This shows that the spin dynamics directly reflects the crucial role of Weyl fermions in the metallic ferromagnet.

4.
J Phys Condens Matter ; 28(16): 165702, 2016 Apr 27.
Article in English | MEDLINE | ID: mdl-27023674

ABSTRACT

The first-order transition at T(0) = 270 K for the platinum-based SrPt2Sb2 superconductor was investigated using x-ray diffraction and magnetic susceptibility measurements. When polycrystalline SrPt2Sb2 was cooled down through T(0), the structure was transformed from monoclinic to a modulated orthorhombic structure, and no magnetic order was formed, which illustrates the possibility of a charge density wave (CDW) transition at T(0). SrPt2Sb2 can thus be a new example to examine the interplay of CDW and superconductivity in addition to SrPt2As2, BaPt2As2, and LaPt2Si2. It is unique that the average structure of the low-temperature phase has higher symmetry than that of the high-temperature phase.

5.
J Phys Condens Matter ; 23(5): 056001, 2011 Feb 09.
Article in English | MEDLINE | ID: mdl-21406917

ABSTRACT

We have performed magnetic susceptibility and neutron scattering measurements on polycrystalline Ag-In-RE (RE, rare-earth) 1/1 approximants. In the magnetic susceptibility measurements, for most of the RE elements, inverse susceptibility shows linear behaviour in a wide temperature range, confirming well localized isotropic moments for the RE(3 + ) ions. Exceptionally for the light RE elements, such as Ce and Pr, nonlinear behaviour was observed, possibly due to significant crystalline field splitting or valence fluctuation. For RE = Tb, the susceptibility measurement clearly shows a bifurcation of the field-cooled and zero-field-cooled susceptibility at T(f) = 3.7 K, suggesting a spin-glass-like freezing. On the other hand, neutron scattering measurements detect significant development of short-range antiferromagnetic spin correlations in the elastic channel, which is accompanied by a broad peak at [Formula: see text] meV in the inelastic scattering spectrum. These features have striking similarity to those in the Zn-Mg-Tb quasicrystals, suggesting that the short-range spin freezing behaviour is due to local high-symmetry clusters commonly seen in both systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...