Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Chemosphere ; 352: 141313, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307331

ABSTRACT

Sulfonamides (SNs) belong to a category of broad-spectrum antibiotics, which have attracted growing concerns owing to the adverse effects on ecosystem. In this paper, coral-like graphitic carbon nitrides with nitrogen vacancies were prepared by polymerization of melamine in the presence of NH4Cl, and the effect of NH4Cl amount on the structure and photocatalytic performance of g-C3N4 in degradation of sulfonamide antibiotics such as sulfamethoxazole (SMX), sulfadiazine (SDZ) and sulfathiazole (STZ) was systematically studied. It was found that the addition of NH4Cl results in the formation of coral-like g-C3N4 with nitrogen vacancies, and optimal photocatalyst (PCN-1 sample) prepared with a melamine to NH4Cl mass ratio of 1:1 showed the highest photocatalytic activity towards SNs degradation due to the quick electron-hole migration, efficient separation capacity and excellent photoelectric properties. The electron paramagnetic resonance (EPR) technique was used to determine the reactive oxygen species (ROSs) that are responsible for the degradation of SNs, and the detailed degradation pathway of STZ was proposed according to the identification of the intermediates by liguid chromatography-high resolution mass spectrometry (LC-HRMS).


Subject(s)
Anthozoa , Graphite , Nitriles , Animals , Graphite/chemistry , Sulfonamides , Nitrogen , Ecosystem , Anti-Bacterial Agents/chemistry , Sulfanilamide , Sulfathiazole
2.
RSC Adv ; 13(46): 32413-32423, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37928849

ABSTRACT

In response to the increasing availability of hydrogen energy and renewable energy sources, molybdenum disulfide (MoS2)-based electrocatalysts are becoming increasingly important for efficient electrochemical water splitting. This study involves the incorporation of palladium nanoparticles (PdNPs) into hydrothermally grown MoS2via a UV light assisted process to afford PdNPs@MoS2 as an alternative electrocatalyst for efficient energy storage and conversion. Various analytical techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and energy dispersive spectroscopy (EDS), were used to investigate the morphology, crystal quality, and chemical composition of the samples. Although PdNPs did not alter the MoS2 morphology, oxygen evolution reaction (OER) activity was driven at considerable overpotential. When electrochemical water splitting was performed in 1.0 M KOH aqueous solution with PdNPs@MoS2 (sample-2), an overpotential of 253 mV was observed. Furthermore, OER performance was highly favorable through rapid reaction kinetics and a low Tafel slope of 59 mV dec-1, as well as high durability and stability. In accordance with the electrochemical results, sample-2 showed also a lower charge transfer resistance, which again provided evidence of OER activity. The enhanced OER activity was attributed to a number of factors, including structural, surface chemical compositions, and synergistic effects between MoS2 and PdNPs.

3.
RSC Adv ; 13(48): 34122-34135, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38019984

ABSTRACT

Researchers are increasingly focusing on using biomass waste for green synthesis of nanostructured materials since green reducing, capping, stabilizing and orientation agents play a significant role in final application. Wheat peel extract contains a rich source of reducing and structure orienting agents that are not utilized for morphological transformation of NiO nanostructures. Our study focuses on the role of wheat peel extract in morphological transformation during the synthesis of NiO nanostructures as well as in non-enzymatic electrochemical urea sensing. It was observed that the morphological transformation of NiO flakes into nanoplatelets took place in the presence of wheat peel extract during the preparation of NiO nanostructures and that both the lateral size and thickness of the nanostructures were significantly reduced. Wheat peel extract was also found to reduce the optical band gap of NiO. A NiO nanostructure prepared with 5 mL of wheat peel extract (sample 2) was highly efficient for the detection of urea without the use of urease enzyme. It has been demonstrated that the induced modification of NiO nanoplatelets through the use of structure-orienting agents in the wheat peel has enhanced their electrochemical performance. A linear range of 0.1 mM to 13 mM was achieved with a detection limit of 0.003 mM in the proposed urea sensor. The performance of the presented non-enzymatic urea sensor was evaluated in terms of selectivity, stability, reproducibility, and practical application, and the results were highly satisfactory. As a result of the high surface active sites on sample 2, the low charge transfer resistance, as well as the high exposure to the surface active sites of wheat peel extract, sample 2 demonstrated enhanced performance. The wheat peel extract could be used for the green synthesis of a wide range of nanostructured materials, particularly metal/metal oxides for various electrochemical applications.

4.
Biosensors (Basel) ; 13(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37622866

ABSTRACT

The ability to measure uric acid (UA) non-enzymatically in human blood has been demonstrated through the use of a simple and efficient electrochemical method. A phytochemical extract from radish white peel extract improved the electrocatalytic performance of nickel-cobalt bimetallic oxide (NiCo2O4) during a hydrothermal process through abundant surface holes of oxides, an alteration of morphology, an excellent crystal quality, and increased Co(III) and Ni(II) chemical states. The surface structure, morphology, crystalline quality, and chemical composition were determined using a variety of analytical techniques, including powder X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and X-ray photoelectron spectroscopy (XPS). The electrochemical characterization by CV revealed a linear range of UA from 0.1 mM to 8 mM, with a detection limit of 0.005 mM and a limit of quantification (LOQ) of 0.008 mM. A study of the sensitivity of NiCo2O4 nanostructures modified on the surface to UA detection with amperometry has revealed a linear range from 0.1 mM to 4 mM for detection. High stability, repeatability, and selectivity were associated with the enhanced electrochemical performance of non-enzymatic UA sensing. A significant contribution to the full outperforming sensing characterization can be attributed to the tailoring of surface properties of NiCo2O4 nanostructures. EIS analysis revealed a low charge-transfer resistance of 114,970 Ohms that offered NiCo2O4 nanostructures prepared with 5 mL of radish white peel extract, confirming an enhanced performance of the presented non-enzymatic UA sensor. As well as testing the practicality of the UA sensor, blood samples from human beings were also tested for UA. Due to its high sensitivity, stability, selectivity, repeatability, and simplicity, the developed non-enzymatic UA sensor is ideal for monitoring UA for a wide range of concentrations in biological matrixes.


Subject(s)
Nanostructures , Raphanus , Humans , Uric Acid
5.
RSC Adv ; 13(26): 17710-17726, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37333727

ABSTRACT

The preparation of Co3O4 nanostructures by a green method has been rapidly increasing owing to its promising aspects, such as facileness, atom economy, low cost, scale-up synthesis, environmental friendliness, and minimal use of hazardous chemicals. In this study, we report on the synthesis of Co3O4 nanostructures using the milky sap of Calotropis procera (CP) by a low-temperature aqueous chemical growth method. The milky sap of CP-mediated Co3O4 nanostructures were investigated for oxygen evolution reactions (OERs) and supercapacitor applications. The structure and shape characterizations were done by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) techniques. The prepared Co3O4 nanostructures showed a heterogeneous morphology consisting of nanoparticles and large micro clusters. A typical cubic phase and a spinel structure of Co3O4 nanostructures were also observed. The OER result was obtained at a low overpotential of 250 mV at 10 mA cm-2 and a low Tafel slope of 53 mV dec-1. In addition, the durability of 45 hours was also found at 20 mA cm-2. The newly prepared Co3O4 nanostructures using the milky sap of CP were also used to demonstrate a high specific capacitance of 700 F g-1 at a current density of 0.8 A g-1 and a power density of 30 W h kg-1. The enhanced electrochemical performance of Co3O4 nanostructures prepared using the milky sap of CP could be attributed to the surface oxygen vacancies, a relatively high amount of Co2+, the reduction in the optical band gap and the fast charge transfer rate. These surface, structural, and optical properties were induced by reducing, capping, and stabilizing agents from the milky sap of CP. The obtained results of OERs and supercapacitor applications strongly recommend the use of the milky sap of CP for the synthesis of diverse efficient nanostructured materials in a specific application, particularly in energy conversion and storage devices.

6.
RSC Adv ; 13(27): 18614-18626, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37346947

ABSTRACT

Recently, the nanostructured nickel-cobalt bimetallic oxide (NiCo2O4) material with high electrochemical activity has received intensive attention. Beside this, the biomass assisted synthesis of NiCo2O4 is gaining popularity due to its advantageous features such as being low cost, simplicity, minimal use of toxic chemicals, and environment-friendly and ecofriendly nature. The electrochemical activity of spinel NiCo2O4 is associated with its mixed metal oxidation states. Therefore, much attention has been paid to the crystal quality, morphology and tunable surface chemistry of NiCo2O4 nanostructures. In this study, we have used citrus lemon juice consisting of a variety of chemical compounds having the properties of a stabilizing agent, capping agent and chelating agent. Moreover, the presence of several acidic chemical compounds in citrus lemon juice changed the pH of the growth solution and consequently we observed surface modified and structural changes that were found to be very effective for the development of energy conversion and energy storage systems. These naturally occurring compounds in citrus lemon juice played a dynamic role in transforming the nanorod morphology of NiCo2O4 into small and well-packed nanoparticles. Hence, the prepared NiCo2O4 nanostructures exhibited a new surface-oriented nanoparticle morphology, high concentration of defects on the surface (especially oxygen vacancies), sufficient ionic diffusion and reaction of electrolytic ions, enhanced electrical conductivity, and favorable reaction kinetics at the interface. The electrocatalytic properties of the NiCo2O4 nanostructures were studied in oxygen evolution reaction (OER) at a low overpotential of 250 mV for 10 mA cm-2, Tafel slope of 98 mV dec-1, and durability of 40 h. Moreover, an asymmetric supercapacitor was produced and the obtained results indicated a high specific capacitance of (Cs) of 1519.19 F g-1, and energy density of 33.08 W h kg-1 at 0.8 A g-1. The enhanced electrochemical performance could be attributed to the favorable structural changes, surface modification, and surface crystal facet exposure due to the use of citrus lemon juice. The proposed method of transformation of nanorod to nanoparticles could be used for the design of a new generation of efficient electrocatalyst materials for energy storage and conversion uses.

7.
Biosensors (Basel) ; 13(4)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37185519

ABSTRACT

The electrochemical performance of NiCo2O4 with urea precursors was evaluated in order to develop a non-enzymatic urea sensor. In this study, NiCo2O4 nanostructures were synthesized hydrothermally at different concentrations of urea and characterized using scanning electron microscopy and X-ray diffraction. Nanostructures of NiCo2O4 exhibit a nanorod-like morphology and a cubic phase crystal structure. Urea can be detected with high sensitivity through NiCo2O4 nanostructures driven by urea precursors under alkaline conditions. A low limit of detection of 0.05 and an analytical range of 0.1 mM to 10 mM urea are provided. The concentration of 006 mM was determined by cyclic voltammetry. Chronoamperometry was used to determine the linear range in the range of 0.1 mM to 8 mM. Several analytical parameters were assessed, including selectivity, stability, and repeatability. NiCo2O4 nanostructures can also be used to detect urea in various biological samples in a practical manner.


Subject(s)
Glucose , Nanostructures , Animals , Glucose/chemistry , Urea , Milk , Oxides/chemistry , Nickel , Cobalt/chemistry , Nanostructures/chemistry , Electrochemical Techniques
8.
Micromachines (Basel) ; 14(3)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36985084

ABSTRACT

To determine urea accurately in clinical samples, food samples, dairy products, and agricultural samples, a new analytical method is required, and non-enzymatic methods are preferred due to their low cost and ease of use. In this study, bitter gourd peel biomass waste is utilized to modify and structurally transform nickel oxide (NiO) nanostructures during the low-temperature aqueous chemical growth method. As a result of the high concentration of phytochemicals, the surface was highly sensitive to urea oxidation under alkaline conditions of 0.1 M NaOH. We investigated the structure and shape of NiO nanostructures using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). In spite of their flake-like morphology and excellent crystal quality, NiO nanostructures exhibited cubic phases. An investigation of the effects of bitter gourd juice demonstrated that a large volume of juice produced thin flakes measuring 100 to 200 nanometers in diameter. We are able to detect urea concentrations between 1-9 mM with a detection limit of 0.02 mM using our urea sensor. Additionally, the stability, reproducibility, repeatability, and selectivity of the sensor were examined. A variety of real samples, including milk, blood, urine, wheat flour, and curd, were used to test the non-enzymatic urea sensors. These real samples demonstrated the potential of the electrode device for measuring urea in a routine manner. It is noteworthy that bitter gourd contains phytochemicals that are capable of altering surfaces and activating catalytic reactions. In this way, new materials can be developed for a wide range of applications, including biomedicine, energy production, and environmental protection.

9.
Molecules ; 28(6)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36985746

ABSTRACT

To cope with environmental pollution caused by toxic emissions into water streams, high-performance photocatalysts based on ZnO semiconductor materials are urgently needed. In this study, ZnO nanostructures are synthesized using leafy spinach extract using a biogenic approach. By using phytochemicals contained in spinach, ZnO nanorods are transformed into large clusters assembled with nanosheets with visible porous structures. Through X-ray diffraction, it has been demonstrated that leafy spinach extract prepared with ZnO is hexagonal in structure. Surface properties of ZnO were altered by using 10 mL, 20 mL, 30 mL, and 40 mL quantities of leafy spinach extract. The size of ZnO crystallites is typically 14 nanometers. In the presence of sunlight, ZnO nanostructures mineralized methylene blue. Studies investigated photocatalyst doses, dye concentrations, pH effects on dye solutions, and scavengers. The ZnO nanostructures prepared with 40 mL of leafy spinach extract outperformed the degradation efficiency of 99.9% for the MB since hydroxyl radicals were primarily responsible for degradation. During degradation, first-order kinetics were observed. Leafy spinach extract could be used to develop novel photocatalysts for the production of solar hydrogen and environmental hydrogen.


Subject(s)
Sunlight , Zinc Oxide , Photolysis , Zinc Oxide/chemistry , Methylene Blue/chemistry , Spinacia oleracea , Lighting
10.
Biosensors (Basel) ; 13(1)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36671982

ABSTRACT

The surface tailored metal oxide nanostructures for the development of non-enzymatic sensors are highly demanded, but it is a big task due to the wide range of complexities during the growth process. The presented study focused on the surface modification of the heterogeneous morphology of cobalt oxide (Co3O4) prepared by the hydrothermal method. Further surface modification was conducted with the use of sodium citrate as a reducing and surface modifying agent for the Co3O4 nanostructures through the high density of oxygenated terminal groups from the citrate ions. The citrate ions enabled a significant surface modification of the Co3O4 nanostructures, which further improved the electrochemical properties of the Co3O4 material toward the design of the non-enzymatic ascorbic acid sensor in a phosphate buffer solution of pH 7.4. The morphology and crystal arrays of the Co3O4 nanostructures were studied by scanning electron microscopy (SEM) and powder X-ray diffraction (XRD) techniques. These physical characterizations showed the highly tailored surface features of Co3O4 nanostructures and a significant impact on the crystal properties. The electrochemical activity of Co3O4 was studied by chronoamperometry, linear sweep voltammetry, and cyclic voltammetry (CV) for the detection of ascorbic acid. The linear range of the proposed sensor was measured from 0.5 mM to 6.5 mM and a low limit of detection of 0.001 mM was also estimated. The presented Co3O4 nanostructures exhibited significant surface roughness and surface area, consequently playing a vital role toward the selective, sensitive, and stable detection of ascorbic acid. The use of a low cost surface modifying agent such as sodium citrate could be of great interest for the surface roughness and high surface area of nanostructured materials for the improved electrochemical properties for the biomedical, energy storage, and conversion systems.


Subject(s)
Ascorbic Acid , Nanostructures , Sodium Citrate , Oxides/chemistry , Nanostructures/chemistry , Citric Acid , Electrochemical Techniques/methods
11.
RSC Adv ; 12(39): 25549-25564, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36199347

ABSTRACT

The present study is focused on yogurt as a simple, inexpensive, abundant, and green source for the preparation of luminescent carbon material for enhancing the photodegradation of methylene blue (MB). It introduces an ecological and sustainable approach for the large-scale production of carbon material using the direct thermal annealing of yogurt in a muffle furnace. The size of the as-prepared carbon material is about 200-300 nm, with average particle size distribution of 355 nm. The material exhibits clear luminescence under illumination with ultraviolet light. The synthesized carbon material shows an outstanding degradation functionality of MB under the irradiation of ultraviolet (UV) light in aqueous media. Various dye degradation parameters such as initial dye concentration, catalyst dose, pH of dye solution, and scavenger effects have been investigated. The optimum MB concentration was found to be 2.3 × 10-5 M with a degradation efficiency of 94.8%. The degradation was highly enhanced at pH 11 with a degradation efficiency of 98.11%. The degradation of MB under highly alkaline conditions was mainly governed by the high amount of hydroxyl radicals. Furthermore, the scavenger study confirmed that the hydroxyl radicals were mainly involved in the degradation process. The degradation kinetics of MB followed first order kinetics with large values of rate constant. The reusability was also studied to ensure the stability of the as-prepared carbon material during the degradation of MB. The preparation of carbon materials with efficient photosensitivity for the degradation of organic dyes from yogurt shows a green and innovative methodology. Therefore, it can be of great interest for future studies related to energy and environmental applications.

12.
Nanotechnology ; 34(3)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36215879

ABSTRACT

In this study, we have investigated the role of natural dead sea sponge (DSS, Porifera) as a three-dimensional (3D) porous host substrate for the immobilization of nanostructured ZnO material towards the development of ZnO based floating photocatalysts for efficient removal of methylene blue (MB) dye under the illumination of sunlight. After photodegradation, the treated water after dye degradation contains several pathogens, different disinfectants or chemical reagents that are essentially used. This is not the case for DSS as it can naturally kill any pathogens during the wastewater treatment process. To explore these functions, ZnO nanosheets were incorporated onto DSS via hydrothermal protocol and the as prepared ZnO/DSS hybrid material exhibited approximately âˆ¼100% degradation efficiency for the removal of MB. Importantly, the degradation kinetics associated with the fabricated ZnO/DSS was remarkably accelerated as evidenced by the high values of degradation reaction rate constants (3.35 × 10-2min-1). The outperformance of ZnO/DSS could be attributed to the adsorption caused by its 3D porous structure together with the high rapid oxidation of MB. Furthermore, the high charge separation of electron-hole pairs, natural porosity, and abundant catalytic sites offered by the hybrid ZnO/DSS floating photocatalyst have enabled quantitative (∼100%) degradation efficiency for MB. Finally, the excellent reusability results confirm the feasibility of using natural ZnO/DSS-based photocatalyst for practical solution of wastewater treatment and other environmental problems.


Subject(s)
Zinc Oxide , Zinc Oxide/chemistry , Disinfection , Catalysis , Photolysis , Methylene Blue/chemistry
13.
Nanotechnology ; 33(50)2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36103847

ABSTRACT

The present study demonstrates the crucial role of agave americana extract in enhancing the optical properties of zinc oxide (ZnO) through thermal treatment method. Various analytical and surface science techniques have been used to identify the morphology, crystalline structure, chemical composition, and optical properties, including scanning electron microscopy, x-ray diffraction, high resolution transmission electron microscopy (HRTEM), x-ray spectroscopy (EDS) and UV-visible spectroscopy techniques. The physical studies revealed the transformation of ZnO nanorods into nanosheets upon addition of an optimized amount of agave americana extract, which induced large amount of amorphous carbon deposited onto ZnO nanostructures as confirmed by HRTEM analysis. The use of increasing amount of americana extract has significantly reduced the average crystallite size of ZnO nanostructures. The resultant hybrid system of C@ZnO has produced a significant effect on the ultraviolet light-assisted photodegradation of malachite green (MG) dye. The photocatalyst dose was fixed at 10 mg for each study whereas the amount of agave americana extract and MG dye concentration are varied. The functionality of hybrid system was greatly enhanced when the amount of agave americana extract increased while dye concentration kept at lower level. Ultimately, almost 100% degradation efficiency was achieved via the prepared hybrid material, revealing combined contribution from synergy, stabilization of ZnO due to excess of carbon together with the high charge separation rate. The obtained results suggest that the driving role of agave americana extract for surface modification of photocatalyst can be considered for other nanostructured photocatalysts.


Subject(s)
Agave , Nanocomposites , Zinc Oxide , Carbon , Catalysis , Photolysis , Plant Extracts/chemistry , Rosaniline Dyes , Zinc Oxide/chemistry
14.
Nanomaterials (Basel) ; 12(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36014631

ABSTRACT

The present study describes the use of a leaf extract from Ficus carica as a source of natural antioxidants for the surface alteration of bulk titanium dioxide (TiO2) in two steps. First, the hydro-thermal treatment of the bulk TiO2 material was carried out and followed by thermal annealing at 300 °C for 3 h in air. The role of the leaf extract of Ficus carica on the performance of the bulk TiO2 material for the removal of methylene blue (MB) was also studied. Various analytical techniques such as powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were used to explore the crystalline structure, morphology, and composition. The bulk TiO2 material after the leaf-extract treatment exhibited mixed anatase and rutile phases, a flower-like morphology, and Ti, O, and C were its main elements. The average crystallite size was also calculated, and the obtained values for the bulk TiO2 material, 18.11 nm, and the treated bulk TiO2 material with various amounts, 5, 10, and 15 mL, of leaf extract were 16.4, 13.16, and 10.29 nm respectively. Moreover, Fourier-transform infrared spectroscopy validated the typical metal-oxygen bonds and strengthened the XRD results. The bulk TiO2 material chemically treated with Ficus carica has shown outstanding activity towards the degradation of MB under sunlight. The 15 mL of Ficus carica extract significantly enhanced the photocatalytic activity of the bulk TiO2 material towards the degradation of MB. The dye degradation efficiency was found to be 98.8%, which was experimentally proven by the Fourier Transform Infrared spectroscopoyy (FTIR) analysis. The obtained performance of the bulk TiO2 material with Ficus carica revealed excellent surface modifying properties for poorly-performing photocatalysts towards the degradation of synthetic dyes when used in their pristine form. The presented approach suggests that Ficus carica could be of great interest for tuning the surface properties of materials, either in the form of nano-size or bulk-phase in a particular application.

15.
RSC Adv ; 12(29): 18321-18332, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35799920

ABSTRACT

In this study, we have used cotton silk as a source of abundant hydroxyl groups for the fast nucleation/growth of cobalt oxide (Co3O4) nanowires via a hydrothermal method. The crystal planes of the Co3O4 nanowires well matched the cubic phase. The as-synthesized Co3O4 nanowires mainly contained cobalt and oxygen elements and were found to be highly sensitive towards uric acid in 0.01 M phosphate buffer solution at pH 7.4. Importantly, the Co3O4 nanowires exhibited a large surface area, which was heavily utilized during the immobilization of the enzyme uricase via a physical adsorption method. The potentiometric response of the uricase-immobilizing Co3O4 nanowires was measured in the presence of uric acid (UA) against a silver/silver chloride (Ag/AgCl) reference electrode. The newly fabricated uric acid biosensor possessed a low limit of detection of 1.0 ± 0.2 nM with a wide linear range of 5 nM to 10 mM and sensitivity of 30.6 mV dec-1. Additionally, several related parameters of the developed uric acid biosensor were investigated, such as the repeatability, reproducibility, storage stability, selectivity, and dynamic response time, and these were found to be satisfactory. The good performance of the Co3O4 nanowires was verified based on the fast charge-transfer kinetics, as confirmed via electrochemical impedance spectroscopy. The successful practical use of the uric acid biosensor was demonstrated based on the recovery method. The observed performance of the uricase-immobilizing Co3O4 nanowires revealed that they could be considered as a promising and alternative tool for the detection of uric acid under both in vitro and in vivo conditions. Also, the use of cotton silk as a source of abundant hydroxyl groups may be considered for the remarkably fast nucleation/growth of other metal-oxide nanostructures, thereby facilitating the fabrication of functional electrochemical devices, such as batteries, water-splitting devices, and supercapacitors.

16.
Nanotechnology ; 33(27)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35354121

ABSTRACT

Strong demand for renewable energy resources and clean environments have inspired scientists and researchers across the globe to carry out research activities on energy provision, conversion, and storage devices. In this context, development of outperform, stable, and durable electrocatalysts has been identified as one of the major objectives for oxygen evolution reaction (OER). Herein, we offer facile approach for the deposition of few palladium oxide (PdO) nanoparticles on the cobalt-nickel bi-metallic sulphide (CoNi2S4) microstructures represented as PdO@ CoNi2S4using ultraviolet light (UV) reduction method. The morphology, crystalline structure, and chemical composition of the as-prepared PdO@ CoNi2S4composite were probed through scanning electron microscopy, powder x-ray diffraction, high resolution transmission electron microscopy, energy dispersive spectroscopy and x-ray photoelectron spectroscopy techniques. The combined physical characterization results revealed that ultraviolet light (UV) light promoted the facile deposition of PdO nanoparticles of 10 nm size onto the CoNi2S4and the fabricated PdO@ CoNi2S4composite has a remarkable activity towards OER in alkaline media. Significantly, it exhibited a low onset potential of 1.41 V versus reversible hydrogen electrode (RHE) and a low overpotential of 230 mV at 10 mA cm-2. Additionally, the fabricated PdO@ CoNi2S4composite has a marked stability of 45 h. Electrochemical impedance spectroscopy has shown that the PdO@CoNi2S4composite has a low charge transfer resistance of 86.3 Ohms, which favours the OER kinetics. The PdO@ CoNi2S4composite provided the multiple number of active sites, which favoured the enhanced OER activity. Taken together, this new class of material could be utilized in energy conversion and storage as well as sensing applications.

17.
RSC Adv ; 13(1): 743-755, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36683771

ABSTRACT

In this study, we have prepared cobalt selenide (CoSe2) due to its useful aspects from a catalysis point of view such as abundant active sites from Se edges, and significant stability in alkaline conditions. CoSe2, however, has yet to prove its functionality, so we doped palladium oxide (PdO) onto CoSe2 nanostructures using ultraviolet (UV) light, resulting in an efficient and stable water oxidation composite. The crystal arrays, morphology, and chemical composition of the surface were studied using a variety of characterization techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. It was also demonstrated that the composite systems were heterogeneous in their morphology, undergoing a shift in their diffraction patterns, suffering from a variety of metal oxidation states and surface defects. The water oxidation was verified by a low overpotential of 260 mV at a current density of 20 mA cm-2 with a Tafel Slope value of 57 mV dec-1. The presence of multi metal oxidation states, rich surface edges of Se and favorable charge transport played a leading role towards water oxidation with a low energy demand. Furthermore, 48 h of durability is associated with the composite system. With the use of PdO and CoSe2, new, low efficiency, simple electrocatalysts for water catalysis have been developed, enabling the development of practical energy conversion and storage systems. This is an excellent alternative approach for fostering growth in the field.

18.
J Nanosci Nanotechnol ; 21(4): 2500-2510, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33500068

ABSTRACT

The electrolysis of water has paved the way towards a clean, efficient and renewable energy source for the future technologies. Therefore, an efficient electrocatalyst is needed. MoS2 based nonprecious materials are earth-abundant, low cost and promising for the hydrogen evolution reaction. In this study, the effect of sulfur source on the catalytic properties of the MoS2 nanostructures is investigated. Two different sulfur precursors (i.e., thiourea and L-cysteine) were used for the synthesis of MoS2 nanostructures. The optimization of the sulfur precursor content was carried out to report the best for the development of the future generation of HER catalysts. The cysteine assisted synthesis results the mixed MoO3/MoS2 composite structure which has shown significant effect on the catalytic activity. The low concentrations of cysteine and thiourea have shown excellent catalytic activity and stability in 0.5 M H2SO4. TheMoS2 nanostructures with the cysteine as sulfur precursor have shown low Tafel slope of 81 mV dec-1 and a current density of 30 mA cm-2 is obtained at 0.45 V versus RHE. The superior performance of cysteine-based MoS2 sample is due to the rapid charge transfer as confirmed by EIS and excellent conductivity as witnessed by low optical band gap. These findings strengthen the understanding of fundamental science of Mo-based catalysts for the development of the future generation of electrocatalysts and energy conversion technologies.

19.
J Nanosci Nanotechnol ; 21(4): 2520-2528, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33500070

ABSTRACT

Efficient hydrogen evolution reaction (HER) catalysts based on the earth-abundant materials are highly vital to design practical and environmentally friendly water splitting devices. In this study, we present an optimized strategy for the development of active catalysts for hydrogen evolution reaction HER. The composite catalysts are prepared with the nanosurface of NiO for the deposition of NiS by hydrothermal method. In alkaline electrolyte, the NiS/NiO nanocomposite has shown excellent catalytic HER properties at the low onset potential and small Tafel slope of 72 mVdec-1. A current density of 10 mA/cm² is achieved by the nanocomposite obtained with 0.4 gram of NiO as nanosurface for the deposition of NiS (sample 4) at the cost of 429 mV versus RHE. The sample 4 carries more active sites that allow it to act as excellent HER catalyst. Based on this study, we conclude that increasing the nickel oxide content into composite sample facilitates the HER process. Additionally, a long term HER stability for 10 hours and good durability is also demonstrated by the sample 4. Our findings reveal that the optimization of nickel oxide content in the preparation of catalyst leads to the excellent HER activity for the design of practical water splitting devices and other related applications.

20.
J Nanosci Nanotechnol ; 21(4): 2511-2519, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33500069

ABSTRACT

In this research work, we have produced a composite material consisting titanium dioxide (TiO2) and zinc oxide (ZnO) nanostructures via precipitation method. Scanning electron microscopy (SEM) study has shown the mixture of nanostructures consisting nanorods and nano flower. Energy dispersive spectroscopy (EDS) study has confirmed the presence of Ti, Zn and O as main elements in the composite. X-ray diffraction (XRD) study has revealed that the successful presence of TiO2 and ZnO in the composite. The composite material exhibits small optical energy band gap which led to reduction of the charge recombination rate of electron-hole pairs. The band gap for the composite TiO2/ZnO samples namely 1, 2, 3 and 4 is 3.18, 3.00, 2.97 and 2.83 eV respectively. Small optical bandgap gives less relaxation time for the recombination of electron and hole pairs, thus favorable photodegradation is found. The degradation efficiency for the TiO2/ZnO samples for methylene blue in order of 55.03%, 75.7%, 85.14% and 90.08% is found for the samples 1, 2, 3 and 4 respectively. The proposed study of titanium dioxide addition into ZnO is facile and inexpensive for the development of efficient photocatalysts. This can be capitalized at large scale for the energy and.

SELECTION OF CITATIONS
SEARCH DETAIL
...