Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 12(1): 194-199, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30335905

ABSTRACT

Crystalline and amorphous organic materials are an emergent class of heterogeneous photocatalysts for the generation of hydrogen from water, but a direct correlation between their structures and the resulting properties has not been achieved so far. To make a meaningful comparison between structurally different, yet chemically similar porous polymers, two porous polymorphs of a triazine-based graphdiyne (TzG) framework are synthesized by a simple, one-pot homocoupling polymerization reaction using as catalysts CuI for TzGCu and PdII /CuI for TzGPd/Cu . The polymers form through irreversible coupling reactions and give rise to a crystalline (TzGCu ) and an amorphous (TzGPd/Cu ) polymorph. Notably, the crystalline and amorphous polymorphs are narrow-gap semiconductors with permanent surface areas of 660 m2 g-1 and 392 m2 g-1 , respectively. Hence, both polymers are ideal heterogeneous photocatalysts for water splitting with some of the highest hydrogen evolution rates reported to date (up to 972 µmol h-1 g-1 with and 276 µmol h-1 g-1 without Pt cocatalyst). Crystalline order is found to improve delocalization, whereas the amorphous polymorph requires a cocatalyst for efficient charge transfer. This will need to be considered in future rational design of polymer catalysts and organic electronics.

2.
Angew Chem Int Ed Engl ; 57(43): 14188-14192, 2018 Oct 22.
Article in English | MEDLINE | ID: mdl-30159980

ABSTRACT

Water splitting using polymer photocatalysts is a key technology to a truly sustainable hydrogen-based energy economy. Synthetic chemists have intuitively tried to enhance photocatalytic activity by tuning the length of π-conjugated domains of their semiconducting polymers, but the increasing flexibility and hydrophobicity of ever-larger organic building blocks leads to adverse effects such as structural collapse and inaccessible catalytic sites. To reach the ideal optical band gap of about 2.3 eV, A library of eight sulfur and nitrogen containing porous polymers (SNPs) with similar geometries but with optical band gaps ranging from 2.07 to 2.60 eV was synthesized using Stille coupling. These polymers combine π-conjugated electron-withdrawing triazine (C3 N3 ) and electron donating, sulfur-containing moieties as covalently bonded donor-acceptor frameworks with permanent porosity. The remarkable optical properties of SNPs enable fluorescence on-off sensing of volatile organic compounds and illustrate intrinsic charge-transfer effects.

3.
Chemistry ; 24(46): 11916-11921, 2018 Aug 14.
Article in English | MEDLINE | ID: mdl-30024068

ABSTRACT

Light-driven water splitting is a potential source of abundant, clean energy, yet efficient charge-separation and size and position of the bandgap in heterogeneous photocatalysts are challenging to predict and design. Synthetic attempts to tune the bandgap of polymer photocatalysts classically rely on variations of the sizes of their π-conjugated domains. However, only donor-acceptor dyads hold the key to prevent undesired electron-hole recombination within the catalyst via efficient charge separation. Building on our previous success in incorporating electron-donating, sulphur-containing linkers and electron-withdrawing, triazine (C3 N3 ) units into porous polymers, we report the synthesis of six visible-light-active, triazine-based polymers with a high heteroatom-content of S and N that photocatalytically generate H2 from water: up to 915 µmol h-1 g-1 with Pt co-catalyst, and-as one of the highest to-date reported values -200 µmol h-1 g-1 without. The highly modular Sonogashira-Hagihara cross-coupling reaction we employ, enables a systematic study of mixed (S, N, C) and (N, C)-only polymer systems. Our results highlight that photocatalytic water-splitting does not only require an ideal optical bandgap of ≈2.2 eV, but that the choice of donor-acceptor motifs profoundly impacts charge-transfer and catalytic activity.

4.
Chemistry ; 23(53): 13023-13027, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28727178

ABSTRACT

Donor-acceptor dyads hold the key to tuning of electrochemical properties and enhanced mobility of charge carriers, yet their incorporation into a heterogeneous polymer network proves difficulty owing to the fundamentally different chemistry of the donor and acceptor subunits. A family of sulfur- and nitrogen-containing porous polymers (SNPs) are obtained via Sonogashira-Hagihara cross-coupling and combine electron-withdrawing triazine (C3 N3 ) and electron-donating, sulfur-containing linkers. Choice of building blocks and synthetic conditions determines the optical band gap (from 1.67 to 2.58 eV) and nanoscale ordering of these microporous materials with BET surface areas of up to 545 m2 g-1 and CO2 capacities up to 1.56 mmol g-1 . Our results highlight the advantages of the modular design of SNPs, and one of the highest photocatalytic hydrogen evolution rates for a cross-linked polymer without Pt co-catalyst is attained (194 µmol h-1 g-1 ).

SELECTION OF CITATIONS
SEARCH DETAIL
...