Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Phys Rev Lett ; 132(23): 235101, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38905665

ABSTRACT

In this study, we discovered a turbulence transition in a large helical device. The turbulence level and turbulence-driven energy transport decrease to a specific transition density and increase above it. The ruling turbulences below and above the transition density were ion-temperature gradient (ITG) and resistive-interchange (RI) turbulences, consistent with the predictions of gyrokinetic theory and two-fluid MHD model, respectively. Isotope experiments on hydrogen (H) and deuterium (D) clarified the role of transitions. In the ITG regime, turbulence levels and energy transport were comparable in the H and D plasmas. In contrast, in the RI regime, they were clearly suppressed in the D plasma. The results provide crucial knowledge for understanding isotope effects and future optimization of stellarator and heliotron devices.

2.
Phys Rev Lett ; 90(20): 205001, 2003 May 23.
Article in English | MEDLINE | ID: mdl-12785901

ABSTRACT

Sawtooth oscillations have been observed in current-carrying helical plasmas by using electron-cyclotron-emission diagnostics in the Large Helical Device. The plasma current, which is driven by neutral beam injection, reduces the beta threshold of the sawtooth oscillation. When the central q value is increased due to the plasma current, the core region crashes, and, when it is decreased, the edge region crashes annularly. Observed rapid mixture of the plasma in the limited region suggests that these sawtooth crashes are reconnection phenomena. Unlike previous experiments, no precursor oscillation has been observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...