Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
RSC Adv ; 13(44): 30615-30624, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37859780

ABSTRACT

Interaction between two bodies in a liquid metal is an important topic for development of metallic products with high performance. We conducted atomic force microscopy measurements and achieved the interaction between the substrate and the probe in liquid Ga of an opaque and highly viscous liquid. The interaction cannot be accessed with the normal atomic force microscopy, electron microscopy, and beam reflectometry. We performed a theoretical calculation using statistical mechanics of simple liquids by mixing an experimentally derived quantum effect. From both experiment and theory, we found an unusual behaviour in the interaction between the solvophobic substances, which has never been reported in water and ionic liquids. Shapes of the interaction curves between several solvophobic and solvophilic pairs in liquid Ga are also studied.

2.
Nanoscale Adv ; 5(3): 840-850, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36756504

ABSTRACT

The detection of vertical and lateral forces at the nanoscale by atomic force microscopy (AFM) reveals various mechanical properties on surfaces. The qPlus sensor is a widely used force sensor, which is built from a quartz tuning fork (QTF) and a sharpened metal probe, capable of high-resolution imaging in viscous liquids such as lubricant oils. Although a simultaneous detection technique of vertical and lateral forces by using a qPlus sensor is required in the field of nanotribology, it has still been difficult because the torsional oscillations of QTFs cannot be detected. In this paper, we propose a method to simultaneously detect vertical and lateral force components by using a qPlus sensor with a long probe. The first three eigenmodes of the qPlus sensor with a long probe are theoretically studied by solving a set of equations of motion for the QTF prong and probe. The calculation results were in good agreement with the experimental results. It was found that the tip oscillates laterally in the second and third modes. Finally, we performed friction anisotropy measurements on a polymer film by using a bimodal AFM utilizing the qPlus sensor with a long probe to confirm the lateral force detection.

3.
Langmuir ; 37(47): 13932-13940, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34780193

ABSTRACT

In this report, micropatterns of (3-aminopropyl)trimethoxysilane (APTMS) were developed on hydrophilic and hydrophobic surfaces after patterning using 172 nm vacuum ultraviolet (VUV) photolithography. Self-assembled monolayers (SAMs) formed on Si substrates through UV hydrosilylation of 1-hexadecene (HD) and 10-undecenoic acid (UDA) were used as hydrophilic and hydrophobic surfaces, respectively. For templating the HD- and UDA-SAMs, the VUV light was exposed to HD- and UDA-SAMs from the slits of photomasks in atmospheric and evacuated environments, respectively. Various oxygenated groups were generated at the exposed domains of HD-SAM, while the COOH groups were trimmed from the irradiated domains of UDA-SAM. The APTMS molecules were immobilized on the domains that were terminated by oxygenated groups after chemical vapor deposition (CVD). The thicknesses of the developed APTMS micropatterns increased significantly by raising the CVD temperature and in the presence of ambient air in the CVD Teflon container as well. The increase in thicknesses was ascribed to the formation of APTMS multilayers, which were mediated by H3N+ ions. Also, the developed APTMS micropatterns on the UDA-SAM patterned by VUV light irradiation in a high-vacuum environment (HV-VUV) were thicker than those on the VUV/(O) patterned HD-SAM due to the presence of inactive oxygenated groups at the surface of VUV/(O)-terminated domains of HD-SAM such as COO-C and C-O-C groups. The presence of water or ambient air facilitated the silane coupling between the silyl groups with the oxygenated and amino groups The combination of VUV photolithography and the CVD method with control of the conditions would enable us to control the thicknesses and shapes of the developed APTMS micropatterns. These findings illustrate the applicability of VUV photolithography for templating hydrophobic and hydrophobic surfaces toward the development of organosilane architectures, which can be feasible for several applications.

4.
Langmuir ; 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34351164

ABSTRACT

Chemical etching of silicon assisted by various types of carbon materials is drawing much attention for the fabrication of silicon micro/nanostructures. We developed a method of chemical etching of silicon that utilizes graphene oxide (GO) sheets to promote the etching reaction in a hydrofluoric acid-nitric acid (HF-HNO3) etchant. By using an optimized composition of the HF-HNO3 etchant, the etching rate under the GO sheets was 100 times faster than that of our HF-H2O2 system used in a previous report. Kinetic analyses showed that the activation energy of the etching reaction was almost the same at both the bare silicon and GO-covered areas. We propose that adsorption sites for the reactant in the GO sheets enhance the reaction frequency, leading to a deeper etching in the GO areas than the bare areas. Furthermore, GO sheets with more defects were found to have higher catalytic activities. This suggests that defects in the GO sheets function as adsorption sites for the reactant, thereby enhancing the etching rate under the sheets.

5.
Langmuir ; 36(37): 10933-10940, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32864972

ABSTRACT

Microcontact printing (µCP) techniques have sparked a surge of interests in microfabrication since they help produce arrays on a wide range of target substrates in a facile and efficient manner. Polydimethylsiloxane (PDMS), as a well-established material for stamps, has constraints resulting from its hydrophobicity and softness, and the replication of PDMS stamps usually requires rigid masters or processes using a photoresist. Herein, a novel µCP stamp based on cyclo-olefin polymer (COP) is produced through vacuum ultraviolet (VUV) lithography. 2,4,6,8-Tetramethylcyclotetrasiloxane is selectively deposited at the affinity-patterns on the COP surface, and these patterned siloxane films are converted into SiOx meanwhile protecting the COP beneath them from the VUV photoetching. By this means, a patterned relief is fabricated on the COP plates, resulting in a hydrophilic SiOx/COP µCP stamp with punch heights of ∼180 nm. The novelty arises from the simplicity of the master- and photoresist-free microstructuring, and the higher stiffness of SiOx/COP stamps prevents the deformation during pressing. Finally, an example µCP is given to transfer titania precursor gel and produce TiO2 micropatterns on flexible polymer substrates. The SiOx/COP stamps and the µCP of TiO2 provide simple and cost-effective patterning techniques, which should contribute to the future design and creation of flexible devices.

6.
RSC Adv ; 9(55): 32313-32322, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-35530761

ABSTRACT

Formation of precise and high-resolution silica micropatterns on polymer substrates is of importance in surface structuring for flexible device fabrication of optics, microelectronic, and biotechnology. To achieve that, substrates modified with affinity-patterns serve as a strategy for site-selective deposition. In the present paper, vacuum ultraviolet (VUV) treatment is utilized to achieve spatially-controlled surface functionalization on a cyclo-olefin polymer (COP) substrate. An organosilane, 2,4,6,8-tetramethylcyclotetrasiloxane (TMCTS), preferentially deposits on the functionalized regions. Well-defined patterns of TMCTS are formed with a minimum feature of ∼500 nm. The secondary VUV/(O)-treatment converts TMCTS into SiO x , meanwhile etches the bare COP surface, forming patterned SiO x /COP microstructures with an average height of ∼150 nm. The resulting SiO x patterns retain a good copy of TMCTS patterns, which are also consistent with the patterns of photomask used in polymer affinity-patterning. The high quality SiO x patterns are of interests in microdevice fabrication, and the hydrophilicity contrast and adjustable heights reveal their potential application as a "stamp" for microcontact printing (µCP) techniques.

7.
Langmuir ; 34(44): 13162-13170, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30299104

ABSTRACT

This work describes the UV alkoxylation of a series of 1,2-epoxyalkanes on the hydrogen-terminated silicon (H-Si) substrate. The formation of alkoxy self-assembled monolayers (SAMs) and the nature of bonding at the surface of H-Si were examined using water contact angle goniometer, spectroscopic ellipsometer, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy. UV exposure to 1,2-epoxyalkane mesitylene solution for 60 min formed alkoxy-SAMs onto H-Si with hydrophobic properties. The local molecular environment of the alkyl chains transitioned from a disordered, liquid-like state to an ordered, crystalline-like structure with increasing the chain length. XPS and FTIR indicated that the reaction of H-Si with 1,2-epoxyalkane produced Si-O-C linkages. The Si-H bond homolysis and electron/hole were the plausible mechanistic routes for the grafting of 1,2-epoxyalkanes.

8.
Langmuir ; 34(10): 3228-3236, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29451390

ABSTRACT

We have prepared COOH- and COOCH3-terminated self-assembled monolayers (SAMs) from undec-10-enoic acid (UDA) and methyl undec-10-enoate (MUDO) molecules on hydrogen-terminated silicon (H-Si) substrates through ultraviolet (UV) irradiation. The as-prepared UDA- and MUDO-SAMs were exposed to 172 nm vacuum-UV (VUV) light in a high vacuum environment (HV, <10-3 Pa) for different periods. The presence of COO components at the surfaces of these SAMs without prior oxidation would simplify the understanding of the origin of the chemical conversions and the changes of surface properties, as the prior oxidation would change the surface properties and generate different oxygenated groups. After the HV-VUV treatment, the abundance of COOH and COOCH3 components of these SAMs decreased without significant dissociation of their C-C backbones. Degradation of these components occurred through dissociating their C-O bonds, resulting in different C═O components. Also, the occurrence of Norrish type pathways resulted in a slight decrease of carbon content and produced CH3 components. We have applied the HV-VUV lithography to control the abundance of COOH and COOCH3 components in well-defined areas and to investigate the friction differences between the irradiated and masked areas. The irradiated areas exhibited lower friction than the masked areas without observing significant height contrasts between these areas. The reduction in friction was attributed to the conversion of the COOH and COOCH3 components to less adhesive components such as C═O and CH3. These experiments suggest the HV-VUV treatments as an approach for low damage dry surface modifications and reductive lithographic techniques at surfaces terminated by acid and ester groups.

9.
Phys Chem Chem Phys ; 19(45): 30504-30512, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29115352

ABSTRACT

An ionic liquid forms a characteristic solvation structure on a substrate. For example, when the surface of the substrate is negatively or positively charged, cation and anion layers are alternately aligned on the surface. Such a solvation structure is closely related to slow diffusion, high electric capacity, and chemical reactions at the interface. To analyze the periodicity of the solvation structure, atomic force microscopy is often used. The measured force curve is generally oscillatory and its characteristic oscillation length corresponds not to the ionic diameter, but to the ion-pair diameter. However, the force curve is not the solvation structure. Hence, it is necessary to know the relationship between the force curve and the solvation structure. To find physical essence in the relationship, we have used statistical mechanics of a simple ionic liquid. We found that the basic relationship can be expressed by a simple equation and the reason why the oscillation length corresponds to the ion-pair diameter. Moreover, it is also found that Derjaguin approximation is applicable to the ionic liquid system.

10.
Langmuir ; 33(41): 10829-10837, 2017 10 17.
Article in English | MEDLINE | ID: mdl-28933557

ABSTRACT

Through 172 nm vacuum ultraviolet light irradiation in a high vacuum condition (HV-VUV), well-defined micropatterns with a varied periodic friction were fabricated at the surface of self-assembled monolayers (SAMs) terminated with oxygenated groups. No apparent height contrast between the HV-VUV-irradiated and -masked areas was observed, which indicated the stability of the C-C skeleton of the assembled molecules. The trimming of oxygenated groups occurred through dissociating the C-O bonds and promoting the occurrence of α- and ß-cleavages in the C═O-containing components. Hence, the HV-VUV treatment trimmed the oxygenated groups without degrading the C-C skeleton. The HV-VUV treatment influenced the order of the assembled molecules, and the step-terrace structure was distorted. The decrease in friction at the HV-VUV-irradiated domains was attributed to the dissociation of oxygenated groups. (3-Aminopropyl)trimethoxysilane (APTMS) aggregated at the masked areas of the HV-VUV-patterned SAM, where the oxygenated groups worked as anchors. APTMS aggregations did not exist at the irradiated areas, indicating the trimming of the oxygenated groups at these areas. The direct assembling of APTMS on the Si substrate at the irradiated areas was prevented by the remaining C-C skeleton.

11.
Langmuir ; 33(41): 10765-10771, 2017 10 17.
Article in English | MEDLINE | ID: mdl-28930635

ABSTRACT

Silicon is a promising electrode material for photoelectrochemical and photocatalytic reactions. However, the chemically active surface of silicon will be easily oxidized when exposed to the oxidation environment. We immobilized graphene oxide (GO) onto hydrogen-terminated silicon (H-Si) and reduced it through ultraviolet (UV) and vacuum-ultraviolet (VUV) irradiation. This acted as an ultrathin conductive layer to protect H-Si from oxidation. The elemental evolution of GO was studied by X-ray photoelectron spectroscopy, and it was found that GO was partially reduced soon after the deposition onto H-Si and further reduced after UV or VUV light irradiation. The VUV photoreduction demonstrated ca. 100 times higher efficiency compared to the UV reduction based on the irradiation dose. The saturated oxygen-to-carbon ratio (RO/C) of the reduced graphene oxide (rGO) was 0.21 ± 0.01, which is lower than the photoreduction of GO on SiO2 substrate. This indicated the H-Si played an important role in assisting the photoreduction of GO. No obvious exfoliation of rGO was observed after sonicating the rGO-covered H-Si sample in water, which indicated rGO was immobilized on H-Si. The electrical conductivity of H-Si surface was maintained in the rGO-covered region while the exposed H-Si region became insulating, which was observed by conductive atomic force microscopy. The rGO was verified capable to protect the active H-Si against the oxidation under an ambient environment.

12.
Nanoscale ; 9(38): 14703-14709, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28944816

ABSTRACT

Photodetection in a visible light region is important in various applications, including computation, environmental monitoring, biological detection and industrial control. Due to this, research studies to develop photoconductive devices have great significance. We report a study on the photoconductivity of reduced graphene oxide (rGO)/gold nanoparticle (AuNP) nanocomposites, emphasizing the enhancement effect induced by AuNPs. rGO/AuNP photoelectric devices were prepared by spincoating rGO onto an AuNP-array-covered silicon substrate. Photoelectric responses under visible light illumination were measured and the results showed that the negative photoelectric responsivity of rGO was improved by 3 orders of magnitude due to AuNPs. The effects of AuNPs on negative photoconductivity (NPC) properties of rGO were investigated, and it was found that AuNPs affected NPC in three aspects: (1) AuNPs form discrete electrodes separated by nanoscale gaps which generated new conduction paths, and hence the conductivity of rGO was enhanced by 3 orders of magnitude; (2) localized surface plasmon resonance (LSPR) of AuNPs effectively enhances total light absorption of rGO; (3) photocurrent between AuNPs and rGO can weaken the NPC property of rGO. The low-cost and mass-producible rGO/AuNP nanocomposites demonstrate high photoelectric responsivity, which hold much promise for NPC devices.

13.
Soft Matter ; 12(44): 9121-9122, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27797385

ABSTRACT

Correction for 'Chemical conversion of self-assembled hexadecyl monolayers with active oxygen species generated by vacuum ultraviolet irradiation in an atmospheric environment' by Ahmed I. A. Soliman et al., Soft Matter, 2015, 11, 5678-5687.

14.
ACS Appl Mater Interfaces ; 8(16): 10627-35, 2016 04 27.
Article in English | MEDLINE | ID: mdl-27046164

ABSTRACT

Microprocessing of graphene oxide (GO) films is of fundamental importance in fabricating graphene-based devices. We demonstrate the photoetching of GO sheets using vacuum-ultraviolet (VUV, λ = 172 nm) light under controlled atmospheric pressure. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and differential interference contrast microscopy (DIC) studies revealed that the photoetching of GO films successfully proceeded in the regions exposed to VUV irradiation in the oxygen-containing atmosphere. Precise photoetching of the GO sheets was achieved at a vacuum pressure of 5 × 10(3) Pa with VUV light irradiation for 20 min. This was followed by VUV irradiation in a high vacuum (<10(-3) Pa) and sonication in water. The photoetched GO sheets then transformed into reduced GO (rGO) patterns. The minimum feature fabricated by this method was 2 µm wide lines aligned at an interval of 4 µm. This method provides a cost-effective way to fabricate rGO patterns with fewer boundaries between rGO sheets and offers a better integrity of rGO, which can be promising for further applications in micro mechanics, micro electrochemistry, optoelectronics, etc.

15.
Soft Matter ; 11(28): 5678-87, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26081720

ABSTRACT

Vacuum ultraviolet (VUV, λ = 172 nm) irradiation of alkyl self-assembled monolayers (SAMs) in the presence of dry air alters their surface properties. In this work, UV photochemically prepared hexadecyl (HD)-SAMs on hydrogen-terminated silicon substrates were irradiated by VUV light in dry air, which generated active oxygen species upon excitation of the atmospheric oxygen molecules. These active oxygen species converted the terminal methyl groups of the SAMs to polar functional groups, which were examined quantitatively by X-ray photoelectron spectroscopy (XPS) and chemical labeling. At the first stage of VUV irradiation, the surface of SAMs was functionalized, and the ratios of the generated polar functional groups markedly increased. With the elongation of the irradiation period, the SAMs gradually degraded, and the total polar group percentages gradually decreased. The difference between the oxygenated carbon components derived by the deconvolution of the XPS carbon (C1s) spectrum and the chemical labeling of polar groups revealed enormous quantities of ethereal and ester groups that cannot react with the labeling reagents but are included in the C1s spectral envelope. These modifications were reflected on morphological structures of SAMs, which were gradually distorted until a complete amorphous structure was obtained after the complete elimination of HD-SAMs.


Subject(s)
Atmosphere , Environment , Reactive Oxygen Species/chemistry , Silicon/chemistry , Hydrogen/chemistry , Molecular Structure , Photoelectron Spectroscopy , Surface Properties , Ultraviolet Rays , Vacuum
17.
J Colloid Interface Sci ; 411: 145-51, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24041547

ABSTRACT

The photochemical grafting of methyl groups onto an n-type Si(111) substrate was successfully achieved using a Grignard reagent. The preparation involved illuminating a hydrogen-terminated Si(111) that was immersed in a CH3MgBr-THF solution. The success was attributed to the ability of the n-type hydrogenated substrate to produce holes on its surface when illuminated. The rate of grafting methyl groups onto the silicon surface was higher when a larger illumination intensity or when a substrate with lower dopant concentration was used. In addition, the methylated layer has an atomically flat structure, has a hydrophobic surface, and has electron affinity that was lower than the bulk Si.

18.
J Colloid Interface Sci ; 382(1): 22-7, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22749525

ABSTRACT

Synthesis of ω-alkenyl-terminated silver nanoparticles (AgNPs) and then their immobilization on a hydrogen-terminated silicon surface in two-dimensional arrangement through covalent interaction are demonstrated. The thermal-induced hydrosilylation at mild conditions facilitate nanoparticles assembly through interaction between terminal alkenyl (CH(2)=CH-) groups of AgNPs and hydrogen-terminated silicon surface. The assembly of AgNPs on a silicon surface is characterized by FESEM and XPS. Adequate coating of 10-undecene-1-thiol (UDT) on AgNPs and mild temperature hydrosilylation impede the fusion or aggregation of nanoparticles, while they immobilized on a silicon surface, which is very crucial to preserve the discrete entities of nanoparticles. This elegant and facile approach provides stable monolayer of AgNPs with very good coverage area and promises potential to fabricate electronic devices and solar cells, where nanoparticles needs to be directly attached to the silicon surface without an interfacial oxide thin film.


Subject(s)
Alkenes/chemistry , Hydrogen/chemistry , Nanoparticles/chemistry , Silicon/chemistry , Silver/chemistry , Nanoparticles/ultrastructure , Nanotechnology , Surface Properties , Temperature
19.
Langmuir ; 28(20): 7579-84, 2012 May 22.
Article in English | MEDLINE | ID: mdl-22564105

ABSTRACT

We have fabricated gold nanoparticle (AuNP) arrays on indium-tin oxide (ITO) substrates in a nearly one-dimensional fashion. AuNPs were site-selectively immobilized on ITO of which the surface had been patterned by a nanolithography process based on scanning probe microscopy. The fabricated nanoscale lines covered with aminosilane self-assembled monolayer served as chemisorption sites for citrate-stabilized AuNPs of 20 nm in diameter, accordingly, AuNP nanolines with a thickness of single nanoparticle diameter were spontaneously assembled on the lines. In this 1D array, the AuNPs were almost separated from each other due to the electrostatic repulsion between their negatively charged surface layers. Furthermore, a reorganization process of the immobilized AuNP arrays has been successfully demonstrated by replacing each AuNP's surface layer from citric acid to dodecanethiol. By this process, the AuNPs lost their electrostatic repulsion and became hydrophobic so as to be attracted to each other through hydrophobic interaction, resulting in reorganization of the AuNP array. By repeating the deposition and reorganization cycle, AuNPs were more densely packed. The optical absorption peak of the arrays due to their plasmonic resonance was found to shift from 526 to 590 nm in wavelength with repeating cycles, indicating that the resonance manner was changed from the single nanoparticle mode to the multiple particle mode with interparticle coupling.

20.
Chem Commun (Camb) ; 47(31): 8841-3, 2011 Aug 21.
Article in English | MEDLINE | ID: mdl-21738920

ABSTRACT

The molecular density of an aminosilane self-assembled monolayer formed from N-(2-aminoethyl)-3-aminopropyltriethoxysilane (AEAPS) by a vapor phase method has been estimated to be about 3 AEAPS molecules per nm(2) based on chemical labeling, optical absorption spectroscopy and X-ray photoelectron spectroscopy.


Subject(s)
Diamines/chemistry , Gases/chemistry , Silanes/chemistry , Photoelectron Spectroscopy , Trinitrobenzenesulfonic Acid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...