Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(17): 20598-20605, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33836127

ABSTRACT

We have developed a two-dimensional (2D) liquid-crystalline (LC) nanostructured water-treatment membrane showing high virus rejection ability (over 99.99997% for bacteriophage Qß) and improved water permeation. Polymerizable gemini amphiphiles have been designed and synthesized. They have H-shaped gemini-type structures of thermotropic smectic liquid crystals composed of cationic imidazolium moieties. One of the gemini amphiphiles shows a smectic A phase with an interdigitated bilayer structure. A cross-linked self-standing 2D nanostructured polymer film has been obtained by in situ photopolymerization of the gemini amphiphile in the smectic phase. The length of linkers in gemini amphiphiles affects the formation of LC phases. The 2D nanostructured membrane also showed selective salt rejection.

2.
Nanoscale ; 12(21): 11468-11479, 2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32227008

ABSTRACT

Liquid-crystalline (LC) bio-inspired materials based on colloidal nanoparticles with anisotropic morphologies such as sheets, plates, rods and fibers were used as functional materials. They show stimuli-responsive behaviour under mechanical force and in electric and magnetic fields. Understanding the effects of external stimuli on the structures of anisotropic colloidal particles is important for the development of highly ordered structures. Recently, we have developed stimuli-responsive hydroxyapatite (HAP)-based colloidal LC nanorods that are environmentally-friendly functional materials. In the present study, the ordering behaviour of HAP nanorod dispersions, which show LC states, has been examined using in situ small-angle neutron scattering and rheological measurements (Rheo-SANS) under shearing force. The structural analyses and dynamic viscosity observations provided detailed information about the effects of shear force on the structural changes of HAP nanorods in D2O dispersion. The present Rheo-SANS measurements unraveled three kinds of main effects of the shear force: the enhancement of interactions between the HAP nanorods, the alignment of HAP nanorods to the shear flow direction, and the formation and disruption of HAP nanorod assemblies. Simultaneous analyses of dynamic viscosity and structural changes revealed that the HAP nanorod dispersions exhibited distinctive rheological properties accompanied by their ordered structural changes.

3.
J Neurogenet ; 33(2): 143-151, 2019.
Article in English | MEDLINE | ID: mdl-30955396

ABSTRACT

Reinforcement signals such as food reward and noxious punishment can change diverse behaviors. This holds true in fruit flies, Drosophila melanogaster, which can be conditioned by an odor and sugar reward or electric shock punishment. Despite a wide variety of behavior modulated by learning, conditioned responses have been traditionally measured by altered odor preference in a choice, and other memory-guided behaviors have been only scarcely investigated. Here, we analyzed detailed conditioned odor responses of flies after sugar associative learning by employing a video recording and semi-automated processing pipeline. Trajectory analyses revealed that multiple behavioral components were altered along with conditioned approach to the rewarded odor. Notably, we found that lateral wing extension, a hallmark of courtship behavior of D. melanogaster, was robustly increased specifically in the presence of the rewarded odor. Strikingly, genetic disruption of the mushroom body output did not impair conditioned courtship increase, while markedly weakening conditioned odor approach. Our results highlight the complexity of conditioned responses and their distinct regulatory mechanisms that may underlie coordinated yet complex memory-guided behaviors in flies.


Subject(s)
Association Learning/physiology , Courtship , Memory/physiology , Mushroom Bodies/physiology , Smell/physiology , Animals , Appetitive Behavior/physiology , Conditioning, Classical , Drosophila melanogaster , Reward
4.
Langmuir ; 35(11): 4077-4084, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30779576

ABSTRACT

The orientation of the c-axis in octacalcium phosphate (OCP) nanocrystals that were incorporated into hybrid thin films was successfully tuned using poly(vinyl alcohol) (PVA) thin-film templates of varying thicknesses. This approach was inspired by biomineralization. Thicker PVA templates enhanced the c-axis orientation of the OCP crystals perpendicular to the substrate. Using this approach with a 900 nm thick PVA template, OCP/PVA hybrid thin films (1.8 µm thick) with a c-axis orientation perpendicular to the substrate were formed. Hydroxyapatite (HAP) hybrid thin films that also exhibited a perpendicular c-axis orientation were obtained through the topotactic transformation of the OCP/PVA hybrid thin films in aqueous solution. The thickness change of the polymer templates had a significant effect on the structure of the OCP nanocrystals in the hybrid thin films. The structural control of the OCP hybrid thin films that were formed through the biomineralization-inspired approach allowed the formation of HAP hybrid thin films with controlled structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...