Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(25): 23051-23055, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37396233

ABSTRACT

Zirconium phosphate-absorbed ammonia gas and the ammonia concentration (pressure) decreased to 2 ppm (ca. 20 Pa). However, it has not been clarified what the equilibrium pressure of zirconium phosphate is during ammonia gas ab/desorption. In this study, the equilibrium pressure of zirconium phosphate during ammonia ab/desorption was measured using cavity ring-down spectroscopy (CRDS). For ammonia-absorbed zirconium phosphate, a two-step equilibrium plateau pressure was observed during the ammonia desorption in gas. The value of the higher equilibrium plateau pressure at the desorption process was about 25 mPa at room temperature. If the standard entropy change (ΔS0) of the desorption process is assumed to be equal to the standard molar entropy of ammonia gas (192.77 J/mol(NH3)/K), the standard enthalpy change (ΔH0) is about -95 kJ/mol(NH3). In addition, we observed hysteresis in zirconium phosphate at different equilibrium pressures during ammonia desorption and absorption. Finally, the CRDS system allows the ammonia equilibrium pressure of a material in the presence of water vapor equilibrium pressure, which cannot be measured by the Sievert-type method.

2.
Chem Commun (Camb) ; 57(49): 6003-6006, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34075951

ABSTRACT

NaBH4 does not absorb NH3 below 100 kPa but transforms into a liquid state after NH3 absorption. On the other hand, LiBH4 absorbs NH3 at pressures lower than 100 kPa. Interestingly, mixed borohydrides absorbed NH3 at low pressures and were liquefied above 100 kPa due to a synergetic phenomenon. The kinematic viscosity of the liquefied state was in situ analyzed during NH3 absorption.

4.
J Am Chem Soc ; 130(21): 6666-7, 2008 May 28.
Article in English | MEDLINE | ID: mdl-18447355

ABSTRACT

We present here the formation of a modular 2D molecular network composed of two different types of square-shaped butadiyne-bridged macrocycles, having intrinsic molecular voids, aligned alternately at the solid-liquid interface. Site-selective inclusion of a guest cation took place at every other molecular void in the molecular network with two different recognition sites.

5.
J Am Chem Soc ; 128(51): 16613-25, 2006 Dec 27.
Article in English | MEDLINE | ID: mdl-17177410

ABSTRACT

The self-assembly of a series of hexadehydrotribenzo[12]annulene (DBA) derivatives has been scrutinized by scanning tunneling microscopy (STM) at the liquid-solid interface. First, the influence of core symmetry on the network structure was investigated by comparing the two-dimensional (2D) ordering of rhombic bisDBA 1a and triangular DBA 2a (Figure 1). BisDBA 1a forms a Kagomé network upon physisorption from 1,2,4-trichlorobenzene (TCB) onto highly oriented pyrolytic graphite (HOPG). Under similar experimental conditions, DBA 2a shows the formation of a honeycomb network. The core symmetry and location of alkyl substituents determine the network structure. The most remarkable feature of the DBA networks is the interdigitation of the nonpolar alkyl chains: they connect the pi-conjugated cores and direct their orientation. As a result, 2D open networks with voids are formed. Second, the effect of alkyl chain length on the structure of DBA patterns was investigated. Upon increasing the length of the alkyl chains (DBAs 3c-e) a transition from honeycomb networks to linear networks was observed in TCB, an observation attributed to stronger molecule-substrate interactions. Third, the effect of solvent on the structure of the nonpolar DBA networks was investigated in four different solvents: TCB as a polar aromatic solvent, 1-phenyloctane as a solvent having both aromatic and aliphatic moieties, n-tetradecane as an aliphatic solvent, and octanoic acid as a polar alkylated solvent. The solvent dramatically changes the structure of the DBA networks. The solvent effects are discussed in terms of factors that influence the mobility of molecules at the liquid-solid interface such as solvation.


Subject(s)
Alkynes/chemistry , Polycyclic Compounds/chemistry , Alkylation , Alkynes/chemical synthesis , Microscopy, Scanning Tunneling/methods , Models, Molecular , Molecular Structure , Particle Size , Polycyclic Compounds/chemical synthesis , Porosity , Sensitivity and Specificity , Stereoisomerism , Surface Properties
6.
J Am Chem Soc ; 128(11): 3502-3, 2006 Mar 22.
Article in English | MEDLINE | ID: mdl-16536507

ABSTRACT

We present here the formation of a molecular Kagomé network within a two-dimensional (2D) crystal on a surface. This system provides a clear example of how, by design, molecular geometry can be expressed at the level of the 2D crystal lattice, leading to the formation of open networks. Key elements to control molecular network formation are core symmetry, location and orientation of interacting and connecting substituents, as well as symmetry matching between the networks and the surface.

7.
J Org Chem ; 71(1): 401-4, 2006 Jan 06.
Article in English | MEDLINE | ID: mdl-16388670

ABSTRACT

[structures: see text] A hexagonal diethynylbenzene macrocycle having exterior octyloxymethyl groups undergoes spontaneous polymerization at room temperature to form hardly soluble materials, in contrast to the corresponding dehydrotetramer and dehydrooctamer, which are stable enough to show their melting points at higher than 140 degrees C.

SELECTION OF CITATIONS
SEARCH DETAIL
...