Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(24): 31624-31635, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38839601

ABSTRACT

In microelectronics, one of the main 3D integration strategies consists of vertically stacking and electrically connecting various functional chips using through-silicon vias (TSVs). For the fabrication of the TSVs, one of the challenges is to conformally deposit a low dielectric constant insulator thin film at the surface of the silicon. To date, there is no universal technique that can address all types of TSV integration schemes, especially in the case requiring a low deposition temperature. In this work, an organosilicate polymer deposited by initiated chemical vapor deposition (iCVD) was developed and integrated as an insulating layer for TSVs. Process studies have shown that poly(1,3,5-trivinyl-1,3,5-trimethyl cyclotrisiloxane) (P(V3D3)) can present good conformality on high aspect ratio features by increasing the substrate temperature up to 100 °C. The trade-off is a moderate deposition rate. The thermal stability of the polymer has been investigated, and we show that a thermal annealing at 400 °C (with or without ultraviolet exposure) allows the stabilization of the dielectric films by removing residual oligomers. Then, P(V3D3) was integrated in high aspect ratio TSV (10 × 100 µm) on 300 mm silicon wafers using a standard integration flow for TSV metallization. Functional devices were successfully fabricated (including daisy chains of 754 TSVs) and electrically characterized. Our work shows that the metallization barrier should be carefully selected to eliminate the appearance of voids at the top corner of the TSV after the Cu annealing step. Moreover, an appropriate integration process should be used to avoid the appearance of cohesive cracks in the liner. This work constitutes a first proof of concept of the use of an iCVD polymer in a quasi-industrial microelectronic environment. It also highlights the benefit of iCVD as a promising technique to deposit conformal dielectric thin films in a microelectronic pilot line environment.

2.
Rapid Commun Mass Spectrom ; 26(1): 1-8, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22215571

ABSTRACT

The analysis of organic and biological substances by secondary-ion mass spectrometry (SIMS) has greatly benefited from the use of cluster ions as primary bombarding species. Thereby, depth profiling and three-dimensional (3D) imaging of such systems became feasible. Large Ar(n)(+) cluster ions may constitute a further improvement in this direction. To explore this option, size-selected Ar(n)(+) cluster ions with 300 ≤ n ≤ 2200 (bombarding energies 5.5 and 11 keV) were used to investigate the emission of positive secondary ions from four amino acid specimens (arginine, glycine, phenylalanine, and tyrosine) by time-of-flight SIMS. For all cluster sizes, the protonated molecule of the respective amino acid is observed in the mass spectra. With increasing cluster size the number of fragment ions decreases strongly in relation to the intact molecules, to the extent that the fraction of fragment ions amounts to less than 10% in some cases. Such 'soft' emission processes also lead the ejection of dimers and even multimers of the amino acid molecules. In the case of the phenylalanine, secondary ion species composed of up to at least seven phenylalanine moieties were observed. Tentatively, the ionization probability of the emitted molecules is envisaged to depend on the presence of free protons in the emission zone. Their number can be expected to decrease concurrently with the decreasing amount of fragmentation for large Ar(n)(+) cluster ions (i.e. for low energies per cluster atom).


Subject(s)
Amino Acids/chemistry , Argon/chemistry , Mass Spectrometry/methods , Ions/chemistry , Protons
3.
Rapid Commun Mass Spectrom ; 23(20): 3264-8, 2009 Oct 30.
Article in English | MEDLINE | ID: mdl-19757450

ABSTRACT

In this study, we present molecular depth profiling of multilayer structures composed of organic semiconductor materials such as tris(8-hydroxyquinoline)aluminum (Alq3) and 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPD). Molecular ions produced from Alq3 and NPD were measured by linear-type time-of-flight (TOF) mass spectrometry under 5.5 keV Ar70) ion bombardment. The organic multilayer films were analyzed and etched with large Ar cluster ion beams, and the interfaces between the organic layers were clearly distinguished. The effect of temperature on the diffusion of these materials was also investigated by the depth profiling analysis with Ar cluster ion beams. The thermal diffusion behavior was found to depend on the specific materials, and the diffusion of Alq3 molecules was observed to start at a lower temperature than that of NPD molecules. These results prove the great potential of large gas cluster ion beams for molecular depth profiling of organic multilayer samples.

4.
Rapid Commun Mass Spectrom ; 23(11): 1601-6, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19399762

ABSTRACT

We demonstrate depth profiling of polymer materials by using large argon (Ar) cluster ion beams. In general, depth profiling with secondary ion mass spectrometry (SIMS) presents serious problems in organic materials, because the primary keV atomic ion beams often damage them and the molecular ion yields decrease with increasing incident ion fluence. Recently, we have found reduced damage of organic materials during sputtering with large gas cluster ions, and reported on the unique secondary ion emission of organic materials. Secondary ions from the polymer films were measured with a linear type time-of-flight (TOF) technique; the films were also etched with large Ar cluster ion beams. The mean cluster size of the primary ion beams was Ar(700) and incident energy was 5.5 keV. Although the primary ion fluence exceeded the static SIMS limit, the molecular ion intensities from the polymer films remained constant, indicating that irradiation with large Ar cluster ion beams rarely leads to damage accumulation on the surface of the films, and this characteristic is excellently suitable for SIMS depth profiling of organic materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...