Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 413(7): 1883-1891, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33479820

ABSTRACT

This is the first report demonstrating proof of concept for the passive, non-invasive extraction and in situ potentiometric detection of human sweat chloride ions (Cl- ions) using a stable printed planar liquid-junction reference electrode-integrated hydrogel-based touch-sensor pad without activities such as exercise to induce perspiration, environmental temperature control, or requiring cholinergic drug administration. The sensor pad was composed entirely of a screen-printed bare Ag/AgCl-based chloride ion-selective electrode and a planar liquid-junction Ag/AgCl reference electrode, which were fully covered by an agarose hydrogel in phosphate-buffered saline (PBS). When human skin contacted the hydrogel pad, sweat Cl- ions were continuously extracted into the gel, followed by in situ potentiometric detection. The planar liquid-junction Ag/AgCl reference electrode had a polymer-based KCl-saturated inner electrolyte layer to stabilize the potential of the Ag/AgCl electrode even with a substantial change in the chloride ion concentration in the hydrogel pad. We expect this fully screen-printed sensor to achieve the low-cost passive and non-invasive daily monitoring of human Cl- ions in sweat in the future.


Subject(s)
Cholinergic Agents/pharmacology , Electrolytes , Hydrogels/chemistry , Ions , Polymers/chemistry , Potentiometry/instrumentation , Biosensing Techniques , Chlorides/chemistry , Electrochemistry , Electrodes , Equipment Design , Humans , Ion-Selective Electrodes , Potentiometry/methods , Sepharose/chemistry , Skin/drug effects , Sweat , Temperature
2.
Anal Sci ; 36(3): 291-302, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-31904007

ABSTRACT

This review describes recent advances in biosensors for non-invasive human healthcare applications, especially focusing on sweat analysis, along with approaches for fabricating these biosensors based on printed electronics technology. Human sweat contains various kinds of biomarkers. The relationship between a trace amount of sweat biomarkers partially partitioned from blood and diseases has been investigated by omic analysis. Recent progress in wearable or portable biosensors has enabled periodic or continuous monitoring of some sweat biomarkers while supporting the results of the omic analysis. In this review, we particularly focused on a transistor-based biosensor that is highly sensitive in quantitatively detecting the low level of sweat biomarkers. Furthermore, we showed a new approach of flexible hybrid electronics that has been applied to advanced sweat biosensors to realize fully integrated biosensing systems wirelessly connected to a networked IoT system. These technologies are based on uniquely advanced printing techniques that will facilitate mass fabrication of high-performance biosensors at low cost for future smart healthcare.


Subject(s)
Biosensing Techniques , Printing, Three-Dimensional , Sweat , Humans , Organic Chemicals
3.
Sci Rep ; 9(1): 10102, 2019 07 12.
Article in English | MEDLINE | ID: mdl-31300711

ABSTRACT

This study is the first report demonstrating proof-of-concept for a hydrogel-based touch sensor pad used for the non-invasive extraction and detection of sweat components. The sensor device was composed of an electrochemical L-lactate biosensor covered with an agarose gel in a phosphate buffer saline. When human skin contacts the agarose gel, L-lactate in sweat was continuously extracted into the gel, followed by in-situ potentiometric detection without controlled conditions. This novel type of sweat sensor is expected to enable the simple, non-invasive daily periodic monitoring of sweat biomarkers for advanced personal healthcare methods in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...