Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37959648

ABSTRACT

Biofilms, mainly comprised of bacteria, form on materials' surfaces due to bacterial activity. They are generally composed of water, extracellular polymeric substances (polysaccharides, proteins, nucleic acids, and lipids), and bacteria. Some bacteria that form biofilms cause periodontal disease, corrosion of the metal materials that make up drains, and slippage. Inside of a biofilm is an environment conducive to the growth and propagation of bacteria. Problems with biofilms include the inability of disinfectants and antibiotics to act on them. Therefore, we have investigated the potential application of alternating electromagnetic fields for biofilm control. We obtained exciting results using various materials' specimens and frequency conditions. Through these studies, we gradually understood that the combination of the type of bacteria, the kind of material, and the application of an electromagnetic field with various low frequencies (4 kHz-12 kHz) changes the circumstances of the onset of the biofilm suppression effect. In this study, relatively high frequencies (20 and 30 kHz) were applied to biofilms caused by Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis), and quantitative evaluation was performed using staining methods. The sample surfaces were analyzed by Raman spectroscopy using a Laser Raman spectrometer to confirm the presence of biofilms on the surface.

2.
Polymers (Basel) ; 15(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37835934

ABSTRACT

The photochemical degradation of natural rubber (NR) is a prevalent method used to modify its inherent properties. Natural rubber, predominantly derived from the Hevea Brasiliensis tree, exhibits an exceptionally high molecular weight (MW), often reaching a million daltons (Da). This high MW restricts its solubility in various solvents and its reactivity with polar compounds, thereby constraining its versatile applications. In our previous work, we employed TiO2 in its powdered form as a photocatalyst for the functionalization of NR latex. However, the post-process separation and reuse of this powder present substantial challenges. In this present study, we aimed to functionalize deproteinized NR (DPNR) latex. We systematically reduced its MW via photochemical degradation under UVA irradiation facilitated by H2O2. To enhance the efficiency of the degradation process, we introduced TiO2-coated hollow glass beads (TiO2-HGBs) as photocatalysts. This approach offers the advantage of easy collection and repeated reuse. The modified DPNR showed a reduction in its number-average MW from 9.48 × 105 to 0.28 × 105 Da and incorporated functional groups, including hydroxyl, carbonyl, and epoxide. Remarkably, the TiO2-HGBs maintained their performance over seven cycles of reuse. Due to their superior efficacy, TiO2-HGBs stand out as promising photocatalysts for the advanced functionalization of NR across various practical applications.

3.
Sensors (Basel) ; 22(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35591238

ABSTRACT

Biofilms are the result of bacterial activity. When the number of bacteria (attached to materials' surfaces) reaches a certain threshold value, then the bacteria simultaneously excrete organic polymers (EPS: extracellular polymeric substances). These sticky polymers encase and protect the bacteria. They are called biofilms and contain about 80% water. Other components of biofilm include polymeric carbon compounds such as polysaccharides and bacteria. It is well-known that biofilms cause various medical and hygiene problems. Therefore, it is important to have a sensor that can detect biofilms to solve such problems. Graphene is a single-atom-thick sheet in which carbon atoms are connected in a hexagonal shape like a honeycomb. Carbon compounds generally bond easily to graphene. Therefore, it is highly possible that graphene could serve as a sensor to monitor biofilm formation and growth. In our previous study, monolayer graphene was prepared on a glass substrate by the chemical vapor deposition (CVD) method. Its biofilm forming ability was compared with that of graphite. As a result, the CVD graphene film had the higher sensitivity for biofilm formation. However, the monolayer graphene has a mechanical disadvantage when used as a biofilm sensor. Therefore, for this new research project, we prepared bilayer graphene with high mechanical strength by using the CVD process on copper substrates. For these specimens, we measured the capacitance component of the specimens' impedance. In addition, we have included a discussion about the possibility of applying them as future sensors for monitoring biofilm formation and growth.


Subject(s)
Cardiovascular Diseases , Graphite , Bacteria , Biofilms , Carbon , Electric Impedance , Humans , Polymers
4.
J Hazard Mater ; 431: 128592, 2022 06 05.
Article in English | MEDLINE | ID: mdl-35247740

ABSTRACT

In this study, ß-Cyclodextrin (CD) modified Fe3S4 nanomaterials were synthesized by a one-step facile strategy and investigated for the removal of Cr(VI). The resulted CD-Fe3S4 exhibited enhanced removal efficiency toward Cr(VI) than bared Fe3S4 with a maximum capacity of 220.26 mg·g-1 as the molar ratio of CD-to-Fe3S4 at 0.2. The effective performance of CD-Fe3S4 toward Cr(VI) could well maintain under oxic conditions and a wide pH range of aqueous solution. A high selectivity for Cr(VI) was achieved in the presence of coexisting cations and anions. More significantly, a single treatment step of CD-Fe3S4 effectively removed chromium from actual electroplating wastewater to the detection limit of 0.004 mg·L-1 that far below the WHO limitation of Cr (VI) (<0.05 mg·L-1) combing with the rapid magnetic separation without adjusting the pH value of wastewater at 7. The effective removal of Cr (VI) by CD-Fe3S4 involved a complex process of surface adsorption/reduction, and solution homogenous reduction and subsequent sequestration of Cr(III) achieving the effective removal of aqueous total Cr. The superior Cr (VI) removal capability and facial separation of CD-Fe3S4 attained its prominent potential application as an effective material for the Cr(VI) removal.


Subject(s)
Water Pollutants, Chemical , beta-Cyclodextrins , Adsorption , Chromium/analysis , Hydrogen-Ion Concentration , Iron , Magnetic Phenomena , Sulfides , Wastewater , Water , Water Pollutants, Chemical/analysis
5.
Materials (Basel) ; 15(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35160996

ABSTRACT

The remediation of water streams, polluted by various substances, is important for realizing a sustainable future. Magnetic adsorbents are promising materials for wastewater treatment. Although numerous techniques have been developed for the preparation of magnetic adsorbents, with effective adsorption performance, reviews that focus on the synthesis methods of magnetic adsorbents for wastewater treatment and their material structures have not been reported. In this review, advancements in the synthesis methods of magnetic adsorbents for the removal of substances from water streams has been comprehensively summarized and discussed. Generally, the synthesis methods are categorized into five groups, as follows: direct use of magnetic particles as adsorbents, attachment of pre-prepared adsorbents and pre-prepared magnetic particles, synthesis of magnetic particles on pre-prepared adsorbents, synthesis of adsorbents on preprepared magnetic particles, and co-synthesis of adsorbents and magnetic particles. The main improvements in the advanced methods involved making the conventional synthesis a less energy intensive, more efficient, and simpler process, while maintaining or increasing the adsorption performance. The key challenges, such as the enhancement of the adsorption performance of materials and the design of sophisticated material structures, are discussed as well.

6.
Membranes (Basel) ; 11(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33466331

ABSTRACT

Hexagonal tungsten oxide (h-WO3) membrane is a novel candidate for dehydration of acetic acid (CH3COOH)/water mixtures owing to its molecular sieving property and acidic resistance. Meanwhile, c-plane orientation is an important factor for h-WO3 membranes because the pores of h-WO3 run along its c-axis. However, so far, high c-plane orientation has not been successful on tubular substrates. Here, the effect of synthesis conditions of h-WO3 membranes on tubular substrates against c-plane orientation and CH3COOH/water separation performance are investigated. The h-WO3 membranes were prepared by hydrothermal synthesis from a precursor sol containing various amounts of sodium tungstate (Na2WO4) in the presence of tubular substrates with seeds embedded on their outside surface. The seeding method and the amount of Na2WO4 in the precursor sol significantly affected both crystal orientation and densification of the membrane. A precursor sol with appropriate amounts of Na2WO4 was essential to simultaneously satisfy high c-plane orientation and densification of the membrane while excess Na2WO4 drastically decreased the degree of c-plane orientation. A highly c-plane oriented h-WO3 membrane was successfully obtained under the optimized condition, which exhibited a maximum separation factor of 40.0 and a water permeance of 1.53 × 10-7 mol·m-2·s-1·Pa-1 in a 90:10 wt % CH3COOH/water mixture. The water permeance approximately doubled compared to the previous report, possibly owing to the significantly higher degree of c-plane orientation. Furthermore, it was found that its separation ability can be maintained while stored in 90:10 wt % CH3COOH/water mixture with pH < 0 for more than 500 h.

7.
Chemosphere ; 272: 129933, 2021 Jun.
Article in English | MEDLINE | ID: mdl-35534970

ABSTRACT

It is urgent and essential to remove antimony from wastewater due to its potential carcinogenicity. In this paper, a nano ferric oxide (NFO) adsorbent was synthesized in a one-step low temperature calcination (150 °C) process. It presents a surprising self-acidification behavior, could automatically adjust the pH to around 4 from different intimal pH values (4-9), which enable it to efficiently remove more than 99% of Sb(V) from wastewater in a wide pH range. X-ray photoelectron spectroscopy analysis proved that the self-acidification function was originated from the hydrolyzation of surface Fe atoms on ferric oxide nanoparticles. The maximum adsorption capacity of this adsorbent is 78.1 mg/g which is 2-3 times higher than that of the samples obtained at higher temperatures (250 °C and 350 °C), and also its adsorption kinetic constant is ten times higher, which can be attributed to the larger surface areas and smaller sizes of ferric oxides synthesized at 150 °C. In the actual wastewater treatment, the effluent's concentration after treatment can be maintained below the instrument detection limit even under low initial antimony concentration. We believe that this new adsorbent has great potential in the practical application in the treatment of Sb polluted wastewaters due to its simple synthesis, high efficiency, and low cost.


Subject(s)
Antimony , Water Pollutants, Chemical , Adsorption , Antimony/chemistry , Ferric Compounds/chemistry , Hydrogen-Ion Concentration , Oxides/chemistry , Wastewater
8.
J Nanosci Nanotechnol ; 19(10): 6841-6848, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31027039

ABSTRACT

MOR zeolite is an effective adsorbent for separating organic molecules from various solutions owing to its large windows of 0)65 × 0)70 nm and its relatively high silica-alumina ratio which provides higher hydrophobicity. Fine powdery MOR zeolite is desirable for adsorption of organic molecules considering its larger surface area; however, fine particles are difficult to remove from solutions after treatment. Intensification of magnetic susceptibility through combination with magnetic particles ensure quick and easy removal of fine adsorbents by magnetic force. Meanwhile, seed assisted method is a powerful technique to direct and accelerate zeolite synthesis by adding seed crystals into the precursor sol prior to hydrothermal synthesis. In this work, we selected magnetite as the magnetic particle and propose the hydrothermal synthesis of MOR zeolite/magnetite composite via seed assisted method for the first time. MOR zeolite/magnetite composite with high MOR zeolite crystallinity was obtained by synthesizing for only 6 hours at 463 K when adding seed crystals, while no sign of crystallization was observed even after 24 hours in their absence. In addition, pre-milling of seed crystals together with magnetite was found to be effective to incorporate magnetite into MOR zeolite during crystallization and to decrease the primary crystal size of the crystallized MOR zeolite.

9.
Bioinorg Chem Appl ; 2012: 495218, 2012.
Article in English | MEDLINE | ID: mdl-23316128

ABSTRACT

Various techniques for forming TiO(2) coatings on Ti have been investigated for the improvement of the osteoconductivity of Ti implants. However, it is not clear how the oxidizing process affects this osteoconductivity. In this study, TiO(2) coatings were prepared using the following three processes: anodizing in 0.1 M H(3)PO(4) or 0.1 M NaOH aqueous solution; thermal oxidation at 673 K for 2 h in air; and a two-step process of anodizing followed by thermal oxidation. The oxide coatings were evaluated using SEM, XRD, and XPS. The water contact angle on the TiO(2) coatings was measured as a surface property. The osteoconductivity of these samples was evaluated by measuring the contact ratio of formed hard tissue on the implanted samples (defined as the R(B-I) value) after 14 d implantation in rats' tibias. Anatase was formed by anodizing and rutile by thermal oxidation, but the difference in the TiO(2) crystal structure did not influence the osteoconductivity. Anodized TiO(2) coatings were hydrophilic, but thermally oxidized TiO(2) coatings were less hydrophilic than anodized TiO(2) coatings because they lacked in surface OH groups. The TiO(2) coating process using anodizing without thermal oxidation gave effective improvement of the osteoconductivity of Ti samples.

10.
J Biomed Mater Res ; 61(3): 354-9, 2002 Sep 05.
Article in English | MEDLINE | ID: mdl-12115460

ABSTRACT

A new hydrocoating method (the thermal substrate method) has been proposed for coating calcium phosphates, such as hydroxyapatite, onto titanium substrates in an aqueous solution. The influences of several solution properties on the thermal substrate method were examined. The solutions used included 3 mmol dm(-3) Ca(H(2)PO(4))(2) and 7 mmol dm(-3) CaCl(2) as a reference concentration solution. The ion concentration was changed from 0.1 to 2 times with respect to the reference concentration. The experimental studies were conducted under the following conditions: temperature = 140 degrees C, heating time = 10-20 min., pH = 4-8 and Ca/P = 0.0167-16.7. The type of precipitate changed, depending on the pH and ion concentration. In the reference solution with pH > 6, predominantly hydroxyapatite was precipitated onto titanium. By contrast, only CaHPO(4) was formed in the solution of pH 4. In the solution with an ion concentration of one-tenth the reference solution, CaHPO(4) was also precipitated. The addition of H(3)PO(4) to the 0.1-times solution accelerated the precipitation rate of HA. It is suggested that the PO(4) (3-) concentration was insufficient to form HA in the Ca/P = 1.67 solution.


Subject(s)
Biocompatible Materials/chemistry , Durapatite/chemistry , Titanium/chemistry , Calcium Chloride , Calcium Phosphates , Chemical Precipitation , Hydrogen-Ion Concentration , Osmolar Concentration , Prosthesis Design , Solutions , Temperature
11.
J Biomed Mater Res ; 59(2): 390-7, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11745577

ABSTRACT

A new hydrocoating method (the thermal substrate method) is proposed for coating calcium phosphates such as hydroxyapatite (HA), on titanium substrates in an aqueous solution. Several factors (e.g., the type of ion source, the heating time and temperature, and the surface roughness of the substrate) affected the characteristics of the precipitate formed by this method. The solution used included 3 mmol dm(-3) Ca(H(2)PO(4))(2) and 7 mmol dm(-3) CaCl(2), and its pH was adjusted to 6.5. The experimental studies were conducted under the following conditions: temperature 45-160 degrees C, heating time 10-20 min, and surface roughness of substrate #120-#2000 grid ground using energy paper. A high quality of precipitate, whose predominant component was HA, was obtained on titanium substrates by the thermal substrate method in an aqueous solution. No significant difference in the precipitates was found with the type of ion source. The amount of HA precipitate increased with increasing temperature and with increasing heating time. The features of the precipitate were different, depending on the surface roughtness of the substrate: HA regularly nucleated along the grooves of the rough surface (#120 and #400 grid), and in the case of the fine surface (#1200-#2000 grid), a uniform precipitation occurred.


Subject(s)
Biocompatible Materials , Durapatite , Titanium , Chemical Precipitation , Humans , In Vitro Techniques , Materials Testing , Microscopy, Electron, Scanning , Prostheses and Implants , Solutions , Spectroscopy, Fourier Transform Infrared , Water , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...