Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(22)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34832325

ABSTRACT

The effect of SnO2 addition (0, 1, 2, 4 wt.%) on thermoelectric properties of c-axis oriented Al-doped ZnO thin films (AZO) fabricated by pulsed laser deposition on silica and Al2O3 substrates was investigated. The best thermoelectric performance was obtained on the AZO + 2% SnO2 thin film grown on silica, with a power factor (PF) of 211.8 µW/m·K2 at 573 K and a room-temperature (300 K) thermal conductivity of 8.56 W/m·K. PF was of the same order of magnitude as the value reported for typical AZO bulk material at the same measurement conditions (340 µW/m·K2) while thermal conductivity κ was reduced about four times.

2.
Materials (Basel) ; 14(18)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34576506

ABSTRACT

We report the critical current density (Jc) and vortex pinning properties in single crystals of a novel iron-based superconductor (IBS) KCa2Fe4As4F2 with large Jc in the pristine state, before and after introduction of artificial defects by swift-particle irradiation. The effects of 2.6 GeV U and 3 MeV proton irradiations in KCa2Fe4As4F2 single crystals on transition temperature Tc and Jc, including its dose dependence, are systematically studied. Jc~8 MA/cm2 under a self-field at 2 K in the pristine crystal is strongly enhanced up to 19.4 and 17.5 MA/cm2 by irradiation of 2.6 GeV U-ions and 3 MeV protons, respectively. Suppression of Tc and dose dependence of Jc in KCa2Fe4As4F2 is different from that in a representative IBS of (Ba,K)Fe2As2, which can be explained by considering the presence of embedded defects in pristine KCa2Fe4As4F2. The vortex dynamics in the pristine and proton irradiated KCa2Fe4As4F2 single crystals are also investigated from the analyses of the field dependence of Jc and the normalized magnetic relaxation rate. In addition to the contribution of embedded defects, weak collective pinning is considered for comprehensive analyses. Vortex dynamics in KCa2Fe4As4F2 is similar to those in (Ba,K)Fe2As2 to some extent, and different from that in anisotropic Li0.8Fe0.2OHFeSe. Large anisotropy, due to the presence of insulating blocking layers in KCa2Fe4As4F2, which leads to much lower irreversibility field (Hirr) compared with 122-type IBSs, strongly affect the vortex dynamics.

3.
Sci Rep ; 8(1): 14731, 2018 Oct 03.
Article in English | MEDLINE | ID: mdl-30283006

ABSTRACT

Superconducting FeSe0.8Te0.2 thin films on SrTiO3, LaAlO3 and CaF2 substrates were electrochemically etched in an ionic liquid, DEME-TFSI, electrolyte with a gate bias of 5 V. Superconductivity at 38 K was observed on all substrates after the etching of films with a thickness greater than 30 nm, despite the different Tc values of 8 K, 12 K and 19 K observed before etching on SrTiO3, LaAlO3 and CaF2 substrates, respectively. Tc returned to its original value with the removal of the gate bias. The observation of Tc enhancement for these thick films indicates that the Tc enhancement is unrelated to any interfacial effects between the film and the substrate. The sheet resistance and Hall coefficient of the surface conducting layer were estimated from the gate bias dependence of the transport properties. The sheet resistances of the surface conducting layers of the films on LaAlO3 and CaF2 showed identical temperature dependence, and the Hall coefficient was found to be almost independent of temperature and to take values of -0.05 to -0.2 m2/C, corresponding to 4-17 electrons per FeSe0.8Te0.2 unit cell area in two dimensions. These common transport properties on various substrates suggest that the superconductivity at 38 K appears in the surface conducting layer as a result of an electrochemical reaction between the surface of the FeSe0.8Te0.2 thin film and the ionic liquid electrolyte.

4.
Sci Rep ; 6: 28390, 2016 06 22.
Article in English | MEDLINE | ID: mdl-27328948

ABSTRACT

The Hall effect is a powerful tool for investigating carrier type and density. For single-band materials, the Hall coefficient is traditionally expressed simply by , where e is the charge of the carrier, and n is the concentration. However, it is well known that in the critical region near a quantum phase transition, as it was demonstrated for cuprates and heavy fermions, the Hall coefficient exhibits strong temperature and doping dependencies, which can not be described by such a simple expression, and the interpretation of the Hall coefficient for Fe-based superconductors is also problematic. Here, we investigate thin films of Ba(Fe1-xCox)2As2 with compressive and tensile in-plane strain in a wide range of Co doping. Such in-plane strain changes the band structure of the compounds, resulting in various shifts of the whole phase diagram as a function of Co doping. We show that the resultant phase diagrams for different strain states can be mapped onto a single phase diagram with the Hall number. This universal plot is attributed to the critical fluctuations in multiband systems near the antiferromagnetic transition, which may suggest a direct link between magnetic and superconducting properties in the BaFe2As2 system.

5.
Sci Rep ; 3: 2139, 2013.
Article in English | MEDLINE | ID: mdl-23823976

ABSTRACT

The recently discovered oxypnictide superconductor SmFeAs(O,F) is the most attractive material among the Fe-based superconductors due to its highest transition temperature of 56 K and potential for high-field performance. In order to exploit this new material for superconducting applications, the knowledge and understanding of its electro-magnetic properties are needed. Recent success in fabricating epitaxial SmFeAs(O,F) thin films opens a great opportunity to explore their transport properties. Here we report on a high critical current density of over 10(5) A/cm(2) at 45 T and 4.2 K for both main field orientations, feature favourable for high-field magnet applications. Additionally, by investigating the pinning properties, we observed a dimensional crossover between the superconducting coherence length and the FeAs interlayer distance at 30-40 K, indicative of a possible intrinsic Josephson junction in SmFeAs(O,F) at low temperatures that can be employed in electronics applications such as a terahertz radiation source and a superconducting Qubit.

SELECTION OF CITATIONS
SEARCH DETAIL
...