Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 101, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34996961

ABSTRACT

The presence of hopping carriers and grain boundaries can sometimes lead to anomalous carrier types and density overestimation in Hall-effect measurements. Previous Hall-effect studies on carbon nanotube films reported unreasonably large carrier densities without independent assessments of the carrier types and densities. Here, we have systematically investigated the validity of Hall-effect results for a series of metallic, semiconducting, and metal-semiconductor-mixed single-wall carbon nanotube films. With carrier densities controlled through applied gate voltages, we were able to observe the Hall effect both in the n- and p-type regions, detecting opposite signs in the Hall coefficient. By comparing the obtained carrier types and densities against values derived from simultaneous field-effect-transistor measurements, we found that, while the Hall carrier types were always correct, the Hall carrier densities were overestimated by up to four orders of magnitude. This significant overestimation indicates that thin films of one-dimensional SWCNTs are quite different from conventional hopping transport systems.

2.
Nat Commun ; 12(1): 4931, 2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34389723

ABSTRACT

Low-dimensional materials have recently attracted much interest as thermoelectric materials because of their charge carrier confinement leading to thermoelectric performance enhancement. Carbon nanotubes are promising candidates because of their one-dimensionality in addition to their unique advantages such as flexibility and light weight. However, preserving the large power factor of individual carbon nanotubes in macroscopic assemblies has been challenging, primarily due to poor sample morphology and a lack of proper Fermi energy tuning. Here, we report an ultrahigh value of power factor (14 ± 5 mW m-1 K-2) for macroscopic weavable fibers of aligned carbon nanotubes with ultrahigh electrical and thermal conductivity. The observed giant power factor originates from the ultrahigh electrical conductivity achieved through excellent sample morphology, combined with an enhanced Seebeck coefficient through Fermi energy tuning. We fabricate a textile thermoelectric generator based on these carbon nanotube fibers, which demonstrates high thermoelectric performance, weavability, and scalability. The giant power factor we observe make these fibers strong candidates for the emerging field of thermoelectric active cooling, which requires a large thermoelectric power factor and a large thermal conductivity at the same time.

3.
Nano Lett ; 20(8): 6215-6221, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32787188

ABSTRACT

High-harmonic generation (HHG), which is the generation of light with multiple optical harmonics, is an unconventional nonlinear optical phenomenon beyond the perturbation regime. HHG, which was initially observed in gaseous media, has recently been demonstrated in solid-state materials. Determining how to control such extreme nonlinear optical phenomena is a challenging subject. Here, we demonstrate the control of HHG through tuning the electronic structure and carrier injection using single-walled carbon nanotubes (SWCNTs). We reveal systematic changes in the high-harmonic spectra of SWCNTs with a series of electronic structures ranging from a metal structure to a semiconductor structure. We demonstrate enhancement or reduction of harmonic generation by more than 1 order of magnitude by tuning the electron and hole injection into the semiconductor SWCNTs through electrolyte gating. These results open a path toward the control of HHG in the context of field-effect transistor devices.

4.
Nano Lett ; 19(10): 7370-7376, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31498635

ABSTRACT

Semiconductors are generally considered far superior to metals as thermoelectric materials because of their much larger Seebeck coefficients (S). However, a maximum value of S in a semiconductor is normally accompanied by a minuscule electrical conductivity (σ), and hence, the thermoelectric power factor (P = S2σ) remains small. An attempt to increase σ by increasing the Fermi energy (EF), on the other hand, decreases S. This trade-off between S and σ is a well-known dilemma in developing high-performance thermoelectric devices based on semiconductors. Here, we show that the use of metallic carbon nanotubes (CNTs) with tunable EF solves this long-standing problem, demonstrating a higher thermoelectric performance than semiconducting CNTs. We studied the EF dependence of S, σ, and P in a series of CNT films with systematically varied metallic CNT contents. In purely metallic CNT films, both S and σ monotonically increased with EF, continuously boosting P while increasing EF. Particularly, in an aligned metallic CNT film, the maximum of P was ∼5 times larger than that in the highest-purity (>99%) single-chirality semiconducting CNT film. We attribute these superior thermoelectric properties of metallic CNTs to the simultaneously enhanced S and σ of one-dimensional conduction electrons near the first van Hove singularity.

5.
Nat Commun ; 9(1): 1121, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29549341

ABSTRACT

Confined electrons collectively oscillate in response to light, resulting in a plasmon resonance whose frequency is determined by the electron density and the size and shape of the confinement structure. Plasmons in metallic particles typically occur in the classical regime where the characteristic quantum level spacing is negligibly small compared to the plasma frequency. In doped semiconductor quantum wells, quantum plasmon excitations can be observed, where the quantization energy exceeds the plasma frequency. Such intersubband plasmons occur in the mid- and far-infrared ranges and exhibit a variety of dynamic many-body effects. Here, we report the observation of intersubband plasmons in carbon nanotubes, where both the quantization and plasma frequencies are larger than those of typical quantum wells by three orders of magnitude. As a result, we observed a pronounced absorption peak in the near-infrared. Specifically, we observed the near-infrared plasmon peak in gated films of aligned single-wall carbon nanotubes only for probe light polarized perpendicular to the nanotube axis and only when carriers are present either in the conduction or valence band. Both the intensity and frequency of the peak were found to increase with the carrier density, consistent with the plasmonic nature of the resonance. Our observation of gate-controlled quantum plasmons in aligned carbon nanotubes will not only pave the way for the development of carbon-based near-infrared optoelectronic devices but also allow us to study the collective dynamic response of interacting electrons in one dimension.

6.
ACS Omega ; 3(8): 8932-8936, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-31459025

ABSTRACT

Tungsten disulfide (WS2) nanotubes are cylindrical, multiwall nanotubes with various diameters and wall numbers. They can exhibit various unique properties depending on their structures and thus preparing samples with uniform structures is important for understanding their basic properties and applications. However, most synthesis methods have difficulty to prepare uniform samples, and thus, a purification method to extract nanotubes with a selected diameter and wall number must be developed. Here, we demonstrate a solution-based purification of WS2 nanotubes using a surfactant solution. Stable dispersions of nanotubes were prepared using nonionic surfactants, which enabled us to sort the diameters and wall numbers of the nanotubes through a centrifugation process. By optimizing the conditions, we successfully obtained thin nanotubes with a mean diameter of 32 nm and mean wall number of 13 with relatively small distributions. Finally, we clarified the relationships between the structure and optical properties of the nanotubes.

SELECTION OF CITATIONS
SEARCH DETAIL
...