Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 13(43): 12906-12912, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36519062

ABSTRACT

The high cost and negative environmental impact of precious metal catalysts has led to increased demand for nonprecious alternatives for widely practiced reactions such as the Suzuki-Miyaura coupling (SMC). Ni-catalyzed versions of this reaction have failed to achieve high reactivity with Lewis-basic arylboron nucleophiles, especially pinacolboron esters. We describe the development of (PPh2Me)2NiCl2 as an inexpensive and air-stable precatalyst that addresses this challenge. Under activation by n-BuMgCl, this complex can catalyze the coupling of synthetically important heteroaryl pinacolborons with heteroaryl halides. Mildly basic conditions (aqueous K3PO4) allow the reaction to tolerate sensitive functional groups that were incompatible with other Ni-SMC methods. Experimental and computational studies suggest that catalyst inhibition by substitution of PPh2Me from Ni(ii) intermediates by Lewis basic reactants and products is disfavored relative to more commonly employed ligands in the Ni-SMC, which allows it to operate efficiently in the presence of Lewis bases such as unhindered pyridines.

2.
Org Lett ; 24(30): 5513-5518, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35862860

ABSTRACT

Vicinal diamines are a common motif found in biologically active molecules. The hydroamination of allyl amine derivatives is a powerful approach for the synthesis of substituted 1,2-diamines. Herein, the rhodium-catalyzed hydroamination of primary and secondary allylic amines using diverse amine nucleophiles, including primary, secondary, acyclic, and cyclic aliphatic amines to access a wide range of unsymmetrical vicinal diamines, is presented. The utility of this methodology is further demonstrated through the rapid synthesis of several bioactive molecules and analogs.


Subject(s)
Diamines , Rhodium , Amines , Catalysis , Stereoisomerism
3.
J Am Chem Soc ; 136(32): 11256-9, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25050740

ABSTRACT

The synthesis of 1,2-diamines via a Rh-catalyzed intermolecular hydroamination of N-allyl imines with cyclic amines is presented. Coordinating groups proximal to the olefin bind to the catalyst and promote the transformation. The reaction affords 1,2-diamines in very good yields and is functional-group-tolerant and highly diastereoselective.

SELECTION OF CITATIONS
SEARCH DETAIL
...