Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35566993

ABSTRACT

The topology effects of cyclization on thermal phase transition behaviors were investigated for a series of amphiphilic Pluronic copolymers of both hydrophilic-hydrophobic-hydrophilic and hydrophobic-hydrophilic-hydrophobic block sequences. The dye solubilization measurements revealed the lowered critical micelle temperatures (TCMT) along with the decreased micellization enthalpy (ΔHmic) and entropy (ΔSmic) for the cyclized species. Furthermore, the transmittance and dynamic light scattering (DLS) measurements indicated a block sequence-dependent effect on the clouding phenomena, where a profound decrease in cloud point (Tc) was only found for the copolymers with a hydrophilic-hydrophobic-hydrophilic block sequence. Thus, the effect of cyclization on these critical temperatures was manifested differently depending on its block sequence. Finally, a comparison of the linear hydroxy-terminated, methoxy-terminated, and cyclized species indicated the effect of cyclization to be unique from a simple elimination of the terminal hydrophilic moieties.

2.
Langmuir ; 37(23): 6974-6984, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34048253

ABSTRACT

A series of cyclic surfactants were synthesized from a poly(ethylene glycol) (PEG) homopolymer and Pluronic surfactants L35, L64, P123, F68, 10R5, and 17R4, and their interfacial activity depending on the topology, chain ends, and block sequence was investigated. The cyclization was performed in a single step through etherification of the PEG homopolymer and the hydrophilic-hydrophobic-hydrophilic (ABA type) poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) (PEG-PPG-PEG), while the hydrophobic-hydrophilic-hydrophobic (BAB type) PPG-PEG-PPG was cyclized via acetalization. The cyclized surfactants were rigorously characterized by nuclear magnetic resonance spectroscopy and size exclusion chromatography. Cyclization of the surfactants induced a significant decrease in the hydrodynamic volume, which was more pronounced than that of the PEG homopolymer. Surface tension (γ) measurements indicated that the interfacial activity of the cyclized surfactants is stronger than their corresponding linear precursors, due to the increase in the surfactant density at the air-water interface as a consequence of the decreased molecular occupational area (A) upon cyclization. In the case of the PEG homopolymer, A considerably decreased from 410 Å2 for the linear PEG prepolymer to 100 Å2 for the cyclized PEG product. While the effects of chain-end groups were found to be limited to surfactants of relatively small molecular weights, the influence of cyclization depended strongly on the hydrophilic/hydrophobic ratio; the higher the PEG composition the surfactants had, the larger the decrease in γ and A; in other words, stronger enhancement in the interfacial activity was observed.

3.
Polymers (Basel) ; 8(8)2016 Jul 27.
Article in English | MEDLINE | ID: mdl-30974548

ABSTRACT

A Monte Carlo study of the mean-square radius of gyration R g 2 and scattering function P ( k ) with k the magnitude of the scattering vector for semiflexible ring polymers of the trefoil knot was conducted by the use of the discrete version of the Kratky⁻Porod (KP) wormlike ring model. The behavior of R g 2 and P ( k ) as functions of the reduced contour length λ L , defined as the total contour length L divided by the stiffness parameter λ - 1 , is clarified. A comparison is made of the results for the KP ring of the trefoil knot with those for the KP ring of the trivial knot and for the phantom KP ring without the topological constraints.

4.
J Chem Phys ; 139(20): 204902, 2013 Nov 28.
Article in English | MEDLINE | ID: mdl-24289374

ABSTRACT

A Monte Carlo (MC) study is made of the persistence length q and the binary cluster integral ß (or the excluded-volume strength B) for polyelectrolytes by the use of the discrete Kratky-Porod wormlike chain with hard-core-effective Debye-Hückel electrostatic pair potentials. The quantity q is determined from the initial decay rate of the bond correlation function after preliminary confirmation of the validity of this procedure using the chain with Lennard-Jones pair potentials. The quantity B is determined from the mean-square radius of gyration along with q by the use of the quasi-two-parameter (QTP) excluded-volume theory. They are evaluated for two model cases of polyelectrolytes, sodium hyaluronate as an example of semiflexible polymers and poly(sodium 4-styrenesulfonate) as a typical example of flexible polymers, both in aqueous sodium chloride. The behavior of MC data so obtained for q and B as functions of added salt concentration c is examined in detail, comparing them with the Odijk-Skolnick-Fixman theory of q and the Fixman-Skolnick (FS) theory of B and also with literature experimental data. In particular, the MC values of B are in almost complete agreement with the FS theory for large c, although the latter still overestimates B somewhat for small c. The values of B themselves and also the validity of the QTP theory in general are discussed in comparison with the case of nonionic polymers.

5.
J Chem Phys ; 129(16): 164902, 2008 Oct 28.
Article in English | MEDLINE | ID: mdl-19045309

ABSTRACT

A Monte Carlo study is made of the mean-square radius of gyration S(2) and second virial coefficient A(2) for the two freely rotating chains with the Lennard-Jones (LJ) 6-12 potential and the hard-sphere (HS) one in the range of the bond angle theta from 109 degrees (typical flexible chain) to 175 degrees (typical semiflexible or stiff chain) and in the range of the number n of bonds from 6 to 1000. It is shown that a value may be properly assigned to the collision diameter of the HS potential so that S(2) of the chain with the HS potential agrees well with that of the chain with the LJ one whose parameter values correspond to a good-solvent condition irrespective of the chain stiffness. It is then found that A(2) of the latter chain becomes remarkably smaller than that of the former as the chain stiffness is increased. The result implies that the binary-cluster approximation does not seem to work well for typical semiflexible and stiff polymers.

SELECTION OF CITATIONS
SEARCH DETAIL
...