Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Sci Rep ; 6: 19429, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26780889

ABSTRACT

We performed genome-wide meta-analysis of lipid traits on three samples of Mexican and Mexican American ancestry comprising 4,383 individuals, and followed up significant and highly suggestive associations in three additional Hispanic samples comprising 7,876 individuals. Genome-wide significant signals were observed in or near CELSR2, ZNF259/APOA5, KANK2/DOCK6 and NCAN/MAU2 for total cholesterol, LPL, ABCA1, ZNF259/APOA5, LIPC and CETP for HDL cholesterol, CELSR2, APOB and NCAN/MAU2 for LDL cholesterol, and GCKR, TRIB1, ZNF259/APOA5 and NCAN/MAU2 for triglycerides. Linkage disequilibrium and conditional analyses indicate that signals observed at ABCA1 and LIPC for HDL cholesterol and NCAN/MAU2 for triglycerides are independent of previously reported lead SNP associations. Analyses of lead SNPs from the European Global Lipids Genetics Consortium (GLGC) dataset in our Hispanic samples show remarkable concordance of direction of effects as well as strong correlation in effect sizes. A meta-analysis of the European GLGC and our Hispanic datasets identified five novel regions reaching genome-wide significance: two for total cholesterol (FN1 and SAMM50), two for HDL cholesterol (LOC100996634 and COPB1) and one for LDL cholesterol (LINC00324/CTC1/PFAS). The top meta-analysis signals were found to be enriched for SNPs associated with gene expression in a tissue-specific fashion, suggesting an enrichment of tissue-specific function in lipid-associated loci.


Subject(s)
Genetic Association Studies , Hispanic or Latino , Lipid Metabolism , Quantitative Trait Loci , Quantitative Trait, Heritable , Genetics, Population , Genome-Wide Association Study , Genotype , Humans , Linkage Disequilibrium , Lipids/blood , Mexico , Organ Specificity/genetics , Polymorphism, Single Nucleotide , White People/genetics
2.
Hum Genet ; 134(2): 203-13, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25447270

ABSTRACT

We previously identified a low-frequency (1.1 %) coding variant (G45R; rs200573126) in the adiponectin gene (ADIPOQ) which was the basis for a multipoint microsatellite linkage signal (LOD = 8.2) for plasma adiponectin levels in Hispanic families. We have empirically evaluated the ability of data from targeted common variants, exome chip genotyping, and genome-wide association study data to detect linkage and association to adiponectin protein levels at this locus. Simple two-point linkage and association analyses were performed in 88 Hispanic families (1,150 individuals) using 10,958 SNPs on chromosome 3. Approaches were compared for their ability to map the functional variant, G45R, which was strongly linked (two-point LOD = 20.98) and powerfully associated (p value = 8.1 × 10(-50)). Over 450 SNPs within a broad 61 Mb interval around rs200573126 showed nominal evidence of linkage (LOD > 3) but only four other SNPs in this region were associated with p values < 1.0 × 10(-4). When G45R was accounted for, the maximum LOD score across the interval dropped to 4.39 and the best p value was 1.1 × 10(-5). Linked and/or associated variants ranged in frequency (0.0018-0.50) and type (coding, non-coding) and had little detectable linkage disequilibrium with rs200573126 (r (2) < 0.20). In addition, the two-point linkage approach empirically outperformed multipoint microsatellite and multipoint SNP analysis. In the absence of data for rs200573126, family-based linkage analysis using a moderately dense SNP dataset, including both common and low-frequency variants, resulted in stronger evidence for an adiponectin locus than association data alone. Thus, linkage analysis can be a useful tool to facilitate identification of high-impact genetic variants.


Subject(s)
Adiponectin/genetics , Family , Genetic Loci , Microsatellite Repeats , Polymorphism, Single Nucleotide , Adiponectin/blood , Adolescent , Adult , Aged , Aged, 80 and over , Databases, Nucleic Acid , Datasets as Topic , Female , Genetic Linkage , Hispanic or Latino/genetics , Humans , Lod Score , Male , Middle Aged
3.
Genet Epidemiol ; 38(4): 345-52, 2014 May.
Article in English | MEDLINE | ID: mdl-24719370

ABSTRACT

Linkage analysis of complex traits has had limited success in identifying trait-influencing loci. Recently, coding variants have been implicated as the basis for some biomedical associations. We tested whether coding variants are the basis for linkage peaks of complex traits in 42 African-American (n = 596) and 90 Hispanic (n = 1,414) families in the Insulin Resistance Atherosclerosis Family Study (IRASFS) using Illumina HumanExome Beadchips. A total of 92,157 variants in African Americans (34%) and 81,559 (31%) in Hispanics were polymorphic and tested using two-point linkage and association analyses with 37 cardiometabolic phenotypes. In African Americans 77 LOD scores greater than 3 were observed. The highest LOD score was 4.91 with the APOE SNP rs7412 (MAF = 0.13) with plasma apolipoprotein B (ApoB). This SNP was associated with ApoB (P-value = 4 × 10(-19)) and accounted for 16.2% of the variance in African Americans. In Hispanic families, 104 LOD scores were greater than 3. The strongest evidence of linkage (LOD = 4.29) was with rs5882 (MAF = 0.46) in CETP with HDL. CETP variants were strongly associated with HDL (0.00049 < P-value <4.6 × 10(-12)), accounting for up to 4.5% of the variance. These loci have previously been shown to have effects on the biomedical traits evaluated here. Thus, evidence of strong linkage in this genome wide survey of primarily coding variants was uncommon. Loci with strong evidence of linkage was characterized by large contributions to the variance, and, in these cases, are common variants. Less compelling evidence of linkage and association was observed with additional loci that may require larger family sets to confirm.


Subject(s)
Atherosclerosis/genetics , Exome/genetics , Genetic Linkage/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Insulin Resistance/genetics , Oligonucleotide Array Sequence Analysis , Adolescent , Adult , Black or African American/genetics , Aged , Aged, 80 and over , Apolipoproteins/blood , Apolipoproteins/genetics , Cholesterol Ester Transfer Proteins/genetics , Female , Hispanic or Latino/genetics , Humans , Lipoproteins, HDL/genetics , Lod Score , Male , Middle Aged , Phenotype , Polymorphism, Single Nucleotide/genetics , Young Adult
4.
Pharmacogenomics J ; 14(1): 6-13, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23459443

ABSTRACT

Variability in response to drug use is common and heritable, suggesting that genome-wide pharmacogenomics studies may help explain the 'missing heritability' of complex traits. Here, we describe four independent analyses in 33 781 participants of European ancestry from 10 cohorts that were designed to identify genetic variants modifying the effects of drugs on QT interval duration (QT). Each analysis cross-sectionally examined four therapeutic classes: thiazide diuretics (prevalence of use=13.0%), tri/tetracyclic antidepressants (2.6%), sulfonylurea hypoglycemic agents (2.9%) and QT-prolonging drugs as classified by the University of Arizona Center for Education and Research on Therapeutics (4.4%). Drug-gene interactions were estimated using covariable-adjusted linear regression and results were combined with fixed-effects meta-analysis. Although drug-single-nucleotide polymorphism (SNP) interactions were biologically plausible and variables were well-measured, findings from the four cross-sectional meta-analyses were null (Pinteraction>5.0 × 10(-8)). Simulations suggested that additional efforts, including longitudinal modeling to increase statistical power, are likely needed to identify potentially important pharmacogenomic effects.


Subject(s)
Drug-Related Side Effects and Adverse Reactions/genetics , Gene-Environment Interaction , Long QT Syndrome/genetics , Pharmacogenetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable , Computer Simulation , Cross-Sectional Studies , Electrocardiography , Genome-Wide Association Study , Humans , Linear Models , Markov Chains , White People/genetics
5.
Obesity (Silver Spring) ; 21(12): E721-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23512866

ABSTRACT

OBJECTIVE: Adiponectin is an adipocytokine that has been implicated in a variety of metabolic disorders, including T2D and cardiovascular disease. Studies evaluating genetic variants in ADIPOQ have been contradictory when testing association with T2D in different ethnic groups. DESIGN AND METHODS: In this study, 18 SNPs in ADIPOQ were tested for association with plasma adiponectin levels and diabetes status. SNPs were examined in two independent African-American cohorts (nmax = 1,116) from the Insulin Resistance Atherosclerosis Family Study (IRASFS) and the African American-Diabetes Heart Study (AA-DHS). RESULTS: Five polymorphisms were nominally associated with plasma adiponectin levels in the meta-analysis (P = 0.035-1.02 × 10(-6) ) including a low frequency arginine to cysteine mutation (R55C) which reduced plasma adiponectin levels to <15% of the mean. Variants were then tested for association with T2D in a meta-analysis of these and the Wake Forest T2D case-control study (n = 3,233 T2D, 2645 non-T2D). Association with T2D was not observed (P ≥ 0.08), suggesting limited influence of ADIPOQ variants on T2D risk. CONCLUSIONS: Despite identification of variants associated with adiponectin levels, a detailed genetic analysis of ADIPOQ revealed no association with T2D risk. This puts into question the role of adiponectin in T2D pathogenesis: whether low adiponectin levels are truly causal for or rather a consequence.


Subject(s)
Adiponectin/genetics , Black or African American/genetics , Diabetes Mellitus, Type 2/genetics , Polymorphism, Single Nucleotide , Adiponectin/blood , Adult , Aged , Atherosclerosis/blood , Atherosclerosis/genetics , Biomarkers/blood , Case-Control Studies , Diabetes Mellitus, Type 2/blood , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Humans , Insulin Resistance/genetics , Male , Middle Aged
6.
Hum Mol Genet ; 20(6): 1241-51, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21216879

ABSTRACT

Insulin-like growth factor-I (IGF-I) and insulin-like growth factor-binding protein-3 (IGFBP-3) are involved in cell replication, proliferation, differentiation, protein synthesis, carbohydrate homeostasis and bone metabolism. Circulating IGF-I and IGFBP-3 concentrations predict anthropometric traits and risk of cancer and cardiovascular disease. In a genome-wide association study of 10 280 middle-aged and older men and women from four community-based cohort studies, we confirmed a known association of single nucleotide polymorphisms in the IGFBP3 gene region on chromosome 7p12.3 with IGFBP-3 concentrations using a significance threshold of P < 5 × 10(-8) (P = 3.3 × 10(-101)). Furthermore, the same IGFBP3 gene locus (e.g. rs11977526) that was associated with IGFBP-3 concentrations was also associated with the opposite direction of effect, with IGF-I concentration after adjustment for IGFBP-3 concentration (P = 1.9 × 10(-26)). A novel and independent locus on chromosome 7p12.3 (rs700752) had genome-wide significant associations with higher IGFBP-3 (P = 4.4 × 10(-21)) and higher IGF-I (P = 4.9 × 10(-9)) concentrations; when the two measurements were adjusted for one another, the IGF-I association was attenuated but the IGFBP-3 association was not. Two additional loci demonstrated genome-wide significant associations with IGFBP-3 concentration (rs1065656, chromosome 16p13.3, P = 1.2 × 10(-11), IGFALS, a confirmatory finding; and rs4234798, chromosome 4p16.1, P = 4.5 × 10(-10), SORCS2, a novel finding). Together, the four genome-wide significant loci explained 6.5% of the population variation in IGFBP-3 concentration. Furthermore, we observed a borderline statistically significant association between IGF-I concentration and FOXO3 (rs2153960, chromosome 6q21, P = 5.1 × 10(-7)), a locus associated with longevity. These genetic loci deserve further investigation to elucidate the biological basis for the observed associations and clarify their possible role in IGF-mediated regulation of cell growth and metabolism.


Subject(s)
Genome-Wide Association Study , Insulin-Like Growth Factor Binding Protein 3/blood , Insulin-Like Growth Factor Binding Protein 3/genetics , Insulin-Like Growth Factor I/metabolism , Aged , Chromosomes, Human, Pair 7/genetics , Cohort Studies , Female , Humans , Insulin-Like Growth Factor I/genetics , Male , Polymorphism, Single Nucleotide , White People/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...